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FOREWORD

It gives me great pleasure writing the foreword to this book. The book was 

written in recognition o f the immense contributions of one of Nigeria's 

foremost industrial engineers, respected teacher, mentor, and lover o f youth — 

Professor OI iver Charles-Owaba.

His commitment to the teaching and learning process, passionate pursuit o f  

research and demonstration o f excellence has prompted his colleagues and 

mentees to write this book titled -  Advancing Industrial Engineering in 

Nigeria through Teaching, Research and Innovation (A Festschrift in honour 

o f Professor O. E Charles-Owaba) as a mark of honour, respect and 

recognition for his personality and achievements.

Professor Charles-Owaba has written scores of articles and books while a lso  

consulting for a medley o f organisations. He has served as external exam iner 

to various programmes in the tertiary educational system. The topics 

presented in the book cover the areas of Production/Manufacturing 

Engineering, Ergonom ics/Hum an Factors Engineering, S ystem s 

Engineering, Engineering Management, Operations Research and Policy. 

They present the review o f the literature, extension of theories and real-life 

applications. These should find good use in the drive for national 

development.

Based on the above, and the collection of expertise in the various fields, the 

book is a fitting contribution to the corpus of knowledge in industria 

engineering. It is indeed a befitting gift in honour of erudite Professoi 

Charles-Owaba.

I strongly recommend this book to everyone who is interested in how w ork 

systems can be made more productive and profitable. It represents a 

resourceful compilation to honour a man who has spent the last forty years 

building up several generations of industrial engineers who are part o f  the 

process to put Nigeria in the rightful seat in the comity o f  nations. 

Congratulations to Professor Charles-Owaba, his colleagues and mentees for 
this festschrift.

ProfessorGodwin Ovuworie 

Department of Production Engineering 
University of Benin
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CHAPTER 3 

Development Of An Artificial Neural Network-Fuzzy-Markov Model 

For Industrial Accidents Forecasting 

*1 I. E. Edem and 2O. A. Adebimpe 

1,2Department of Industrial and Production Engineering, University of 

Ibadan, Ibadan, Nigeria. 

*Corresponding Author. E-Mail: 1ie.edem@mail1.edu.ng, 
2oa.adebimpe@mail1.edu.ng 

 

Abstract 

Industrial accidents possess the potential of causing physical, psychological 

and even fatal consequences when they occur. In that regard, Industrial 

accidents forecasting aid stakeholders in properly managing and improving 

workplace safety by anticipating accident occurrences to prevent or 

minimise their consequences. Due to the high variation, random and 

fluctuating characteristics of industrial accident occurrences, machine 

learning and Markov based models methods have become increasingly 

popular as a tool for understanding their occurrence patterns and detecting 

their vibrational directions. However, little investigation has been made 

towards combining the positive characteristics of these methods for 

industrial accidents forecasting. This study is concerned with the 

development of a neuro-fuzzy-Markov model for the prediction and 

forecasting of industrial accident occurrences. 

The methodology employed essentially involves the implementation of the 

Artificial Neural Network (ANN) model through the development of 

structured control methods to enhance improved forecast candidate 

generation potential. Further, an analysis of the model's residual was 

undertaken to obtain an ANN forecast correction factor by using a 
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combination of fuzzy and Markov techniques. Based on this, investigations 

were then carried out to determine the direction of vibration of the ANN 

predictor model. Subsequently, results were generated from the prediction 

mechanism. The model was validated by comparing its one window ahead 

(OWA) forecast potential with those of the ANN model using secondary 

industrial accident data based on the mean absolute percentage error 

(MAPE) and the Root Mean Square Error (RMSE). Also, an evaluation was 

done by comparing the forecast performances of the model with those of two 

traditional (Autoregressive moving average [ARIMA] and exponential 

smoothing [EXPSM]) models and two non-traditional (Mao and Sun grey-

Markov (MSGM) and Grey-Fuzzy-Markov Pattern Recognition GFMAPR) 

models. 

The forecast performance results obtained on the model's application 

showed that it possessed the capability to correct and improve ANN 

forecasts. The MAPE and RMSE results obtained for the ANN-fuzzy-

Markov model were 15.39 and 26.39, while those produced by the ANN 

were 20.13 and 30.57 respectively. The model produced more superior 

forecast when compared with ARIMA and EXPSM, and compared well with 

the MSGM and GFMAPR. 

The obtained results indicate that the model possesses the capability of 

carrying the predictions of industrial fire accident to an acceptable degree of 

accuracy.  

1.0 Introduction 

Accident occurrences are an important component of industrial activities. 

Every occupational activity is inherent with potential accidents which if 

manifested can lead to accidents.  Industrial accidents are undesired 

occurrences that can occur in forms such as burns, cuts, lacerations, radiation 

and amputations and even fatalities. Industrial accident occurrences can 

negatively impact the physical and psycho-social health conditions for 

workers and their families on the one hand, and potentially affect the 

fortunes and continuity of businesses on the other. As a result, understanding 

the dynamics of their occurrences with a view to anticipating and effectively 

managing them becomes imperative.     
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Forecasting accidents ahead of their occurrences is a popular practice 

adopted by organisations as part of their management processes (Xiaoping 

& Liu, 2009; Mock, Nugent, Kobusingye, & Smith, 2017). Accident 

forecasting is a guess at the safety state of a system (Xiaoping & Liu, 2009). 

In most cases, this guess is made by the mathematical or statistical 

characterisation of a prediction mechanism based on available information 

and observations (Shmueli, 2011). Generally, forecasting involves the 

deployment of single or multiple input dependent models (Bontempi, 2008; 

Manaloto & Balahadia, 2017; Makridakis, Spiliotis, & Assimakopoulos, 

2018; Mapuwei, Bodhlyera, & Mwambi, 2020) to produce outputs based on 

the mathematical or algorithmic rules governing the deployed model.  

Single input forecasting models are used particularly in situations where the 

accident occurrence causal variables are sparse, unavailable, or difficult to 

extract as is the case with accident occurrences (Aidoo & Eshun, 2012; 

Ratnayaka, 2017), or when a simple model in terms of input data is desired 

(Aksoy & Dahamsheh, 2009). In this regard, traditional time series (TS) 

models such as Auto-Regressive and Moving Average (ARIMA), 

exponential smoothing and regression models find relevance and are still 

prevalently deployed (Ghedira, Kammoun, & Saad, 2018; Svs, 2018; 

Urrutia et al., 2018; Malysa, 2020).  

The non-traditional forms of TS models such as Artificial Neural Networks 

(ANN), Markov models and Fuzzy Time Series Models (FTSM) based 

models have become more popular in the last decade as a result of their 

ability to handle imprecise, ambiguous and incomplete data (Zhang, Qu, 

Wang, & Zhao, 2020). ANNs are computing systems that learn without 

formal statistical training, and possess the ability to detect complex 

nonlinear relationships between dependent and independent variables (Tu, 

1996; Xiaoping & Liu, 2009), Fuzzy logic is used for the detection, 

description and representation of uncertainties (Pabuçcu, 2017) while the 

Markov methods possess the characteristic of detecting fluctuations and the 

vibrational direction of TS occurrences (Wang, Mehrabi, & Kannatey-

Asibu, 2002).   In their pure forms, these models have been found to perform 

satisfactorily from their successful application in various industrial areas 

including weather forecasting (Voyant, Muselli, Paoli, & Nivet, 2011), 

health emergency preparedness (Mapuwei et al., 2020), crude oil production 
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(Boaisha & Amaitik, 2010), stock price forecasting (Javedani Sadaei & Lee, 

2014) and tool wear monitoring rolling bearings (Liu, Youmin, wu, Wang, 

& Xie, 2017).  

Furthermore, the hybrid forms of these models have also been frequently 

applied. For example, Ali, Yohanna, Ijasini, and Garkida (2018) applied a 

Neuro-Fuzzy (NF) model in electricity load forecasting and the results of the 

study indicated a forecast accuracy greater than 98 %.  Ganesan, Annamalai, 

and Deivanayagampillai (2019) used the fuzzy cognitive maps Markov 

chain model in the prediction of stock market behaviour. Das, Naik, and 

Behera (2020) developed a NF and fuzzy reduction model and successfully 

applied it to solving problems of data classification in data mining. In 

addition, a fuzzy neural network-Markov model was developed by (Shi, Hu, 

Yu, & Hu, 2016). The results obtained from the studies mentioned show that 

the hybrid forms of the non-traditional, non-linear models can be 

implemented in TS forecasting to produce outputs of high accuracies. 

Some studies have been carried out concerning the use of single and hybrid 

forms of the ANN, Markov and FTSM models for industrial accident 

prediction and prevention. Lan and Zhou (2014) applied a variant of the 

grey-Markov model in carrying prediction and out a single step ahead 

forecast of annual coal mining deaths in China.  A forecast of the number of 

occupational accidents, death and permanent incapacitation was made by 

(Ceylan, 2014) using models developed by ANN models. Results obtained 

showed that the aim for which the models were developed was achieved. 

Also, Edem, Oke, and Adebiyi (2018) developed a high variation tolerant 

grey-fuzzy-Markov model for a one-window ahead (OWA) forecast of 

industrial accidents. Sarkar, Vinay, Raj, Maiti, and Mitra (2019) observe that 

although some efforts have been made concerning carrying out studies in 

this area, the literature is sparse with the domain still slowly developing. As 

such, more research is required in this area for improved understanding. 

Two major problems of utilizing the ANN for TS analysis is that of the 

choice of ANN architecture (R. Adhikari & Agrawal, 2013; Sánchez-

Sánchez, García-González, & Coronell, 2020) and overtraining 

minimization (Faraway & Chatfield, 1998). Both of these problems have 

reduced the popularity of ANN for TS prediction. Two common attempts at 
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overcoming this problem involve the use of model comparison criteria and 

cross-validation experiments (Ratnadip Adhikari, 2015). The use of the 

Markov technique as a tool for detecting TS vibrational directions and 

correcting model prediction anomalies is popular and has been successfully 

applied in various industrial areas (Yarmohammadi & Safaei, 2012; Liu et 

al., 2017; Wilinski, 2019). However, little effort has been made at applying 

this technique in ANN TS prediction to correct and redirect forecasts that 

have been produced from inadequate architectures. 

This study is aimed at the development of an ANN-Fuzzy-Markov model 

for OWA forecasting of industrial accidents. The objectives include the 

building of the model and its subsequent evaluation with other existing 

models currently utilised for the same purpose. The study seeks to 

demonstrate the effectiveness of the Markov technique in producing 

accurate ANN TS forecast without consideration given to the processes of 

optimal network architecture development.  It is hoped that the model 

developed will serve as an approach for accident forecasting as well as 

present stakeholders with an effective accident management tool.    

The rest of the work is presented as follows: Section 2 contains a brief 

presentation of the theoretical concepts of the model, a detailed description 

of the methodological steps undertaken in the development of the model is 

presented in section 3. Section 4 contains information regarding the 

application of the developed model and the discussion of the results obtained 

from its analysis and evaluation. The conclusions made from the study are 

presented in section 5.  

2.0 Theoretical Background for the Model Development 

The ANN-fuzzy-Markov industrial accidents (AFMIA) forecasting model is 

essentially founded on four concepts namely, ANN prediction procedure, 

fuzzy classification scheme, Markov transitions and the fuzzy-Markov 

probabilities determination. The ANN prediction procedure describes the 

method of setting up the ANN structure for industrial accidents TS 

prediction. The fuzzy classification scheme is concerned with capturing the 

imprecision detected from the prediction anomalies of the ANN while the 

Markov transitions are concerned with the re-direction of the prediction 

anomalies. The concept of the fuzzy-Markov probabilities determination is 
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usually required in analysing situations where systems characterized by 

Markov properties also exhibit imprecise properties. These four concepts are 

subsequently discussed in this section. 

2.1 General concept of Artificial Neural Network  

ANN forecasting is a deep learning method employed for TS analysis. 

Unlike linear TS models, ANNs readily learn different types of relationships 

between variables in the absence of do not require complex mapping 

function assumption functions (Brownlee, 2018). Although different 

variants of ANN models such as the feed-forward network (FNN) or Multi-

Layer Perceptron (MLP) network, as well as the back-propagation (recurrent 

Neural networks [RNN]) such as Convolutional Neural Networks (CNN) 

and the Long-Short Term Memory (LSTM) network, exist, the general 

architecture for all ANN models is essentially the same.  

A typical ANN model is primarily made up of layers of nodes or neurons. 

The simplest ANN model must possess at least three neuron layers namely, 

not more than one input layer (responsible for receiving and processing input 

information), at least one hidden layer (concerned with the further 

processing of information received from the input layer) and not more than 

not output layer (which conveys the results of the information processed by 

the previously mentioned layers) [see Figure 1]. The key to the workings of 

the ANN is that within a layer, information processed, weighted and 

distributed to the next layer is made possible by the firing of biological 

system emulated signals arising from mathematically derived activation 

functions (MacLeod, 2013). Thus at the end of the process, the output layer 

makes a decision or produces an inference based on the values computed in 

the hidden layers.  

The major difference between the FNN and the RNN variants is that in the 

FNN, information once weighted, cannot be modified as information flow is 

unidirectional while for the RNN, there is bi-directional information flow as 

the results received by the output layer can be communicated back to the 

hidden layer for weight readjustment towards improved learning. 
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Figure 1: Illustration of a typical ANN architecture  

 

 

 

2.2 Neural network model structure for forecasting The procedure for the 

deployment of ANN for forecasting involves firstly the preparation of a set 

of historical data 𝑋 {𝑋: 𝑥𝑖(𝑖: 1,2,3, . . . , 𝑥𝐸)} into the input vector form 𝑀 and 

output vector form 𝑌 (Equations 1 and 2).  𝑀 is a trajectory matrix made up 

of 𝐿 lagged row vectors 𝑚𝑖(𝑖: 1,2,3, . . . , 𝐿) each of width 𝑁 made up of a 

sequence of occurrences following each other. 𝑁 (1 ≤ 𝑁 ≤ 𝑥𝐸−1) is 

referred to as the forecast window length. 𝑌 is a column vector made up 𝐿 

rows for which each row value  𝑦𝑖(𝑖: 1,2,3, . . . , 𝐿) is mapped to 𝑚𝑖  for 

learning and prediction.   

It is worth noting that 𝑥𝐸 does not constitute the entire historical data, but 

the portion of data set aside for building the model. 𝑀 and 𝑌 are 

subsequently fed into the built network and a supervised learning process 

involving setting the process to the desired number of iterations (epochs) 

and learning rates (Kriesel, 2010) is executed to obtain forecast. Due to the 

time and computational complexities involved in the manual development 

and implementation of the process, the use of soft computational solutions 

such as Keras TensorFlow (in R and python programming) have become 

quite popular (Brownlee, 2018; Lewis, 2018) 
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(1)                                                         

                                                                                                                                                       

(2) 

                                            

2.3 Fuzzy set classification 

A fuzzy set ℱ is defined by a set (Equation 3). 𝜇ℳ(𝑥) is called a membership 

function of the set and represents a discrete or continuous function that 

specifies the extent to which the element 𝑠, a member of crisp set 𝑀, belongs 

to ℳ. 𝑠 is associated with a fuzzy value that exists between 0 and 1 

describing the extent in which it belongs to or satisfies some property 

attributed to 𝑀. Fuzzy values can be described using triangular, quadratic or 

exponential numbers (Bojadziev & Bojadziev, 2007). 

ℱ = {(𝑠, 𝜇ℳ(𝑠)|𝑠 ∈ ℱ, 𝜇ℱ(𝑠) ∈ [0,1] )}                                       (3) 

 

 

 

2.4 Markov chain probabilities 

Let 𝑆 be a discrete sample space 𝑆 = {𝑠𝑖: 𝑖 = 1,2,3,… , 𝑁}. A Markov chain 

can be defined as a random variable sequence 𝑋𝑡 (𝑡: 1,2,3, . . . , 𝑇) that takes 

values in 𝑋 such that the probability of an event 𝑃𝑠𝑖𝑠𝑖́  occurring is dependent 

on the probability the event 𝑠́𝑖 occurs at time 𝑡 + 1 conditioned on the 

probability that event 𝑠𝑖 occurred at time 𝑡 (Dobrow, 2016). With 

consideration given to a Markov chain of finite-state (Equation 4), the 

probability of event 𝑠́𝑖 occurring for 𝑛 number of step transitions is described 

in equations 5 and 6. 

 

 

 

𝑀 = ൫𝑋𝑖𝑗൯𝑖=1,𝑗=1
𝐿,𝑁

= 

𝑥1    𝑥2     𝑥3 .  .  .    𝑥𝑁−1   𝑥𝑁         𝑚1       
𝑥2    𝑥3     𝑥4 .  .  .      𝑥𝑁    𝑥𝑁+1       𝑚2  
𝑥3    𝑥4     𝑥5 .  .  .   𝑥𝑁+1  𝑥𝑁+2         .  
  .       .         .                  .          .            . 
  .       .         .                  .          .            . 
  .       .         .                  .          .        𝑚𝐿−1  
𝑥𝐿  𝑥𝐿+1 𝑥𝐿+2 .  .  .  𝑥𝐸−2  𝑥𝐸−1       𝑚𝐿    
 𝑌 = 

     𝑦1       𝑦2      𝑦3 .  .  .   𝑦𝐿−1   𝑦𝐿     
(𝑥𝑁+1  𝑥𝑁+2  𝑥𝑁+3 .  .  . 𝑥𝐸−1  𝑥𝐸  )

𝑇 
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(4) 

 

 

 

𝑃𝑠𝑖𝑠𝑖́
𝑡 = 𝑃(𝑋𝑡+1) = 𝑠𝑖́|𝑃(𝑋𝑡) = 𝑠𝑖    {𝑠𝑖 , 𝑠𝑖́ ∈ 𝑆, 𝑡 ≥ 1}                                (5) 

2.5 Fuzzy Markov probabilities 

Fuzzy Markov probabilities (FMB) are the probabilities of events that 

exhibit Markov properties. However, the precision of the state properties 

cannot be accurately estimated. FMB of events is determined from the 

combination of the concepts earlier presented in sections 2.3 and 2.4. Here, 

the FMB determination procedure of (Pardo & de la Fuente, 2010) is 

presented.  

Suppose a set of fuzzy states ℱ𝑘{𝑘 = 1,2,3,… , 𝑧} is defined such that each 

ℱ𝑖 represents an event in the initial Markov chain (Equation 4), then the 

probability of a single step transition from a fuzzy initial state ℱ𝑣  to a fuzzy 

final state ℱ𝑤 is expressed in equation 6. 

𝑃̃ = 𝑃(ℱ𝑤|ℱ𝑣) = 𝑃൫𝑋̃1 = 𝑤|𝑋̃0 = 𝑣൯ =

∑ 𝑃̅ (
𝑃𝑠𝑖𝜇ℱ𝑣൫𝑠𝑖൯

𝑃(ℱ𝑣)
)𝑁

𝑖=1                            (6) 

Where, 𝜇ℱ𝑣(𝑖): Fuzzy membership value for initial Markov event 𝑖, 𝑃𝑠𝑖: Initial 

state probabilities; 𝑃(ℱ𝑣): Fuzzy initial state probabilities; 𝑃̅: The single-

step transition probability to the final fuzzy state ℱ𝑤 given the initial state 

event. 

𝑃(ℱ𝑣) and 𝑃̅ are further described in equations 7 and 8. 

𝑃(ℱ𝑣) = ∑ 𝑃{𝑋0 = 𝑠𝑖́}𝜇ℱ𝑣(𝑠𝑖́)
𝑁
𝑖=1                        (7) 

𝑃̅ = 𝑃൫𝑋̃1 = 𝑤|𝑋0 = 𝑠𝑖൯ = ∑ 𝑃𝑠𝑖𝑠𝑖́𝜇ℱ𝑤(𝑠𝑖́)
𝑁
𝑖=1                     (8) 

 

𝑆𝑡𝑎𝑡𝑒𝑠(𝑠𝑖) 
1 

2 

3 

    𝑃𝑠𝑖𝑠́𝑖 =      . 

. 

. 
𝑁 − 1 

𝑁 

 

    1             2            3   .  .  .     𝑁 − 1             𝑁 

 𝑃11        𝑃12       𝑃13 .  .  .    𝑃1𝑁−1         𝑃1𝑁    
 𝑃21        𝑃22       𝑃23 .  .  .    𝑃2𝑁−1         𝑃2𝑁    
 𝑃31        𝑃32       𝑃33 .  .  .    𝑃3𝑁−1         𝑃3𝑁    
     .             .             .      .  .  .      .                 . 
     .             .             .      .  .  .      .                 . 
     .             .             .      .  .  .      .                 . 
𝑃𝑛−11   𝑃𝑛−12   𝑃𝑛−13 .  .  . 𝑃𝑛−1𝑁−1  𝑃𝑛−1𝑁    

𝑃𝑛−11   𝑃𝑛−12   𝑃𝑛−13 .  .  . 𝑃𝑛−1𝑁−1  𝑃𝑛−1𝑁    
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Equation 6 can be conveniently solved to obtain 𝑃̃ by adopting the following 

stepwise procedure (Pardo & de la Fuente, 2010) 

 

Step 1: Create the initial Markov chain (crisp set) transition matrix 𝑃 = 𝑃𝑠𝑖𝑠𝑖́ 

of the events (Equation 4) 

Step 2: Create the matrix of the initial Markov chain states versus their 

corresponding transition fuzzy state components 𝑄 as well as that of the 

initial Markov chain states versus their corresponding initial fuzzy state 

components 𝐻  

Step 3: Obtain 𝑃̅ = 𝑃𝑄 via matrix multiplication 

Step 4: From 𝐻, determine 𝑃𝑠𝑖𝜇ℱ𝑣(𝑠𝑖) for ∀𝑖, 𝑃(ℱ𝑣) for  ∀𝑘, then obtain (𝐻∗)𝑇  

containing the values of  
𝑃𝑠𝑖𝜇ℱ𝑣൫𝑠𝑖൯

𝑃(ℱ𝑣)
 .  

Step 5:The fuzzy transition probability matrix  𝑃̃  for the event is finally 

obtained using equation 9. 

𝑃̃ = (𝐻∗)𝑇𝑃̅                               (9) 

 

3.0 Methodology 

In this section, the AFMIA forecasting model is presented. Section 3.1 gives 

an overview model development process. The notations and definitions 

employed are presented in Section 3.2. Section 3.3 contains a detailed 

description of the methodological steps deployed in developing AFMIA.  

 

 

 

3.1 Overview of the model development process 

The development of the AFMIA involves the collection and preparation of 

industrial accidents, then deploying the prepared data in the development of 

the ANN prediction model.  The model is used to generate various 

predictions and forecast which are subsequently screened based on certain 

performance criteria. Predictions that satisfy the screening conditions are 

deployed in carrying out a direction of vibration analysis to correct the ANN 

forecast producing a modified value in the process. If the desired ANN 

forecast population level and corresponding corrections are met, then a 

procedure for determining a single value forecast is implemented if not met, 

then the model proceeds to regenerate more forecast candidates. Figure 2 
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presents a summary of the key activities involved in the AFMIA 

development process while Table 1 lists the symbols and notations 

employed in the work.  

 

3.2 Description of the AFMIA development 

In this section, each phase of the forecast model development is described 

in detail in the following subsections. 

 

3.2.1 Development and implementation of ANN prediction model 

Given a set of industrial accident historical data 𝐷 (𝐷 = {𝐷𝑡: 𝑡 =
1,2,3, . . . , 𝐾}), the OWA forecast process aims to forecast 𝐷𝐾+1.  The first 

step taken towards achieving this step was to convert 𝐷 into the input and 

output vector forms described in equations 1 and 2 with the input vector 

window width 𝑁 set. To guide the decision on the choice of 𝑁, a partial auto-

correlation analysis was carried out on 𝐷 to determine the extent of the 

lagged relationship that exists between the data points 𝑁 steps apart. 

Subsequently, the CNN neural network model was deployed. The CNN was 

built using Keras python 3.7 model with TensorFlow backend. Table 2 

shows the parameters that were defined in building CNN and their 

corresponding values. The model was subsequently implemented by training 

𝐷 at different epoch values 𝜀 to obtain the vector of predictions 

𝐷𝜀 {𝐷𝑡
𝜀: 𝑡 = 𝑁 + 1,𝑁 + 2,𝑁 + 3,… , 𝐾 − 1, 𝐾} and corresponding forecast 

𝐷𝐾+1
𝜀 . 
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 Table 1:  Symbols and notations 

𝐶𝐾: ANN Forecast residual CNN: Convolutional Neural 

Networks 

𝐷𝑡
𝜀: ANN prediction made at time 𝑡 𝑁: Swing window width 

𝐶𝑡: Cumulative residual at time 𝑡 CE: cumulative error 

𝐹̃𝑐: Fuzzy correction span vector TS: Time series 

𝜇: Fuzzy membership OWA: One window ahead 

𝐷: Vector of Industrial accident 

historical data 

 

𝐷𝜀: Vector of AFMIA predictions Forecast residual direction of 

vibration range (VBR) 

MAPE: Mean absolute percentage 

error  

AS1, AS2: Accidents datasets 1 and 

2. 

𝛽 : Residual swing magnitude  MMFCR : Method of the most 

frequent cumulative residual  

𝜎: Residual quality  RELU: Rectified Linear Activation 

Function 

𝛽,̂ 𝜎̂: Residual swing control 

parameters 

AdaM: Adaptive moment estimator 

optimiser 

𝜙𝑡,𝑡+1: Residual span value between 𝑡 
and 𝑡 + 1 

 

𝑆𝑖: Residual state 𝑖  

𝜌+{𝑟𝐾
𝜀}: Residual 𝑟𝐾

𝜀 of positive 

polarity  

 

𝑇𝑅 𝑇𝐼: regular and irregular step 

transitions 

 

𝜌൫𝑟𝑗
∗𝜀൯: Polarity of ANN residual of  

point 𝑗 

 

𝑃: crisp Markov transition matrix  

 

3.2.2 Screening of ANN predictions   

One of the major problems that impede effective ANN time series prediction 

is the existence of a plethora of local optima in the model search space. This 

feature creates a high probability of predictions being produced from 

unsuitable local optima during the learning process. 
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Table 2: CNN architecture parameters and corresponding values as 

used in the study 

CNN 

architecture 

Parameter 

Convolution 

dimension 
Kernel size 

Activation 

function 

Input 

shape 

(batch size, 

samples, 

height, 

timestep, 

features) 

 1 64 RELU 
(1, dynamic 

,4,1) 

CNN 

architecture 

Parameter 

Pool size 
Layers 

(dense/output) 
Optimiser 

Loss 

function 

 2 (5/1) AdaM MSE 

 

To surmount this, 𝐷𝜀 was determined to exist in the range of acceptable 

predictions by evaluating some properties of their residuals 𝑟𝜀 and ensuring 

that they exist within a range which we define in this study as acceptable. 

The properties investigated were the residual swing magnitude 𝛽 and 

residual quality 𝜎. 

𝛽 was obtained from the MAPE of 𝐷𝜀 and tries to capture the general swing 

magnitude prevalent in the residuals. 𝜎, which estimates the were 

independent and identical distribution characteristic of the residuals was 

estimated using equations 10 and 11. The equation seeks to estimate the 

extent of dispersion of positive and negative peaks and troughs within the 

residuals.   

The control property value 𝛽̂ was set based on the maximum MAPE 

prediction fitness values produced by the grey-Markov {𝐺𝑀(1,1)} and the 

double-declining exponential smoothing models on the preliminary 

application of the industrial accident data.  𝜎̂ was set to the value of 0.5. In 

both cases, the control property works by making 𝐷𝜀 and 𝐷𝐾+1
𝜀  accepted 

prediction vector 𝐷∗𝜀  and forecast 𝐷𝐾+1
∗𝜀  respectively when 𝛽(𝐷𝜀) and 
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𝜎(𝐷𝜀) do not exceed their respective control values and rejecting 𝐷𝜀 
otherwise. 

𝜎(𝐷𝜀) =
∑ 𝑆𝑗
𝐾−2
𝑗=1

2∗(𝐾−2)
{𝜌൫𝑟𝑗−1

∗𝜀 ൯ ≠ 𝜌൫𝑟𝑗
∗𝜀൯, 𝑗 = 1,2, …𝐾 − 2 }                      (10) 

𝑟𝑗
∗ = {

𝑟𝑡+1
𝜀                                           {𝑡 = 𝐾}      

𝑟𝑡
𝜀(𝜌{𝑟𝑡

𝜀} ≠  𝜌{𝑟𝑡+1
𝜀 })      {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

                         (11)    

𝑟𝑡
𝜀 =

100(𝐷𝑡−𝐷𝑡
𝜀)

𝐷𝑡
                         (12) 

𝑡: 𝑁 + 1… ,𝐾 − 1, 𝐾         

3.3 Forecast correction  

This is the most important stage of the neuro fuzzy-Markov model 

development. We assume that the 𝐷𝜀 is not accurate due to issues relating to 

local and plateau optima as well as model under-learning and over-learning. 

As such, the fuzzy Markov model was applied in the analysis of the ANN 

output towards obtaining improved outcomes.  

The process which essentially involves the analysis to obtain the cumulative 

and span values of residuals, the fuzzy classification of  𝑟𝜀, determination of 

a correction factor and subsequent modification of 𝐷𝐾+1
∗𝜀  is discussed in this 

section.  

3.3.1 Cumulative residual error and span residual error analysis 

Based on the inferences provided by 𝑟𝜀 on the behaviour of the ANN 

model’s attempt to accurately predict the historical data, we theorised that if 

a forecast residual 𝑟𝐾+1
𝜀  was determined, then the forecast accuracy of the 

neural network model could be improved. To this effect, the concept of 

cumulative error (CE) tracking was introduced. CE tracking seeks to 

determine the sum of errors produced by the ANN at point 𝑡, dependent on 

the magnitude and polar direction of 𝑟𝑡
𝜀. Thus within the residual error space,  

the CE at 𝑡 (𝐶𝑡) is defined by equations 13. Also, to obtain 𝐶𝑡, the swing 

spans of  𝑟𝑡
𝜀 (𝑑𝑡,𝑡+1) were determined (equation 14) 

𝐶𝑡 = {

𝐶𝑡−1 − |𝑟𝑡
𝜀|      {(𝜌{𝑟𝑡

𝜀} = 𝜌{𝑟𝑡+1
𝜀 })⋀(|𝑟𝑡

𝜀| > |𝑟𝑡+1
𝜀 |)}

𝐶𝑡−1 + |𝑟𝑡
𝜀|      {(𝜌{𝑟𝑡

𝜀} = 𝜌{𝑟𝑡+1
𝜀 })⋀(|𝑟𝑡

𝜀| ≤ |𝑟𝑡+1
𝜀 |)}

|𝑟𝑡
𝜀|                    {(𝜌{𝑟𝑡

𝜀} ≠ 𝜌{𝑟𝑡+1
𝜀 })}                             

          (13) 

𝜙𝑡,𝑡+1 = {
|𝑟𝑡+1
𝜀 − 𝑟𝑡

𝜀|  {𝜌{𝑟𝑡
𝜀} = 𝜌{𝑟𝑡+1

𝜀 }} 

𝐶𝑡−1 + |𝑟𝑡
𝜀|  {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}           

                          (14) 
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3.3.2 Fuzzy classification of span residual errors 

The residual error spans (𝜙𝑡,𝑡+1), were subsequently classified on basis of 

their span magnitudes (SM). Three lingustic crisp SM classes namely, Low 
{𝐿: (0,0.33θ)}, Medium {𝑀: (0.33θ, 0.67θ)} and Large {𝐻: (0.67θ, θ)} 
were defined. The fuzzy membership of  𝜙𝑡,𝑡+1 in the defined classes were 

determined using triangular membership  functions (equations  15-17).                        
𝜇𝐿 = 𝜇𝜙𝑡,𝑡+1{𝐿} =

{

1                      {𝜙𝑡,𝑡+1 ≤ 0.5𝐿̅}                                                 
2𝜙𝑡,𝑡+1−𝑀̅

𝐿̅−𝑀̅
        {0.5𝐿̅ < 𝜙𝑡,𝑡+1 ≤ 0.5𝑀̅}                                  

0                      {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                                       

      (15) 

𝜇𝑀 = 𝜇𝜙𝑡,𝑡+1{𝑀} =

{
 

 
𝐿̅−2𝜙𝑡,𝑡+1

𝐿̅−𝑀̅
        {0.5𝐿̅ < 𝜙𝑡,𝑡+1 ≤ 0.5𝑀̅}                               

𝐻̅−2𝜙𝑡,𝑡+1

𝐻̅−𝑀̅
       {0.5𝑀̅ < 𝜙𝑡,𝑡+1 ≤ 0.5𝐻̅}                              

0                       {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                                      

      (16)       

𝜇𝐻 = 𝜇𝜙𝑡,𝑡+1{𝐻} =

{

2𝜙𝑡,𝑡+1−𝑀̅

𝐻̅−𝑀̅
     {0.5𝑀̅ < 𝜙𝑡,𝑡+1 ≤ 0.5𝐻̅}                                    

1                     {𝜙𝑡,𝑡+1 ≥ 0.5𝐻̅}                                                    

0                     {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                                           

    (17) 

Where  𝐿̅, 𝑀̅ and 𝐻̅  are the mid point values of  𝐿,𝑀,𝐻 respectively. 

 

 

 

 

 

 

 

 

 

 
𝐿 

    𝑓{𝑆𝑀}𝑖𝑗 =  𝑀 

𝐻 

 

𝐿       𝑀       𝐻   
    𝑓𝐿𝑀   𝑓𝐿𝐻    

 𝑓
𝑀𝐿
  𝑓

𝑀𝑀
  𝑓

𝑀𝐻
         (18)    

 𝑓
𝐻𝐿
  𝑓

𝐻𝑀
   𝑓

𝐻𝐻
             

 
 

𝐿 

  𝐴𝑆𝑀{𝑆𝑀}𝑖𝑗 =  𝑀 

𝐻 

 

𝜇
𝐿
  𝜇

𝑀
    𝜇

𝐻
   

 𝐴𝐿𝐿  𝐴𝑀𝐿  𝐴𝐻𝐿    

 𝐴𝐿𝑀 𝐴𝑀𝑀 𝐴𝐻𝑀          (19)    

 𝐴𝐿𝐻  𝐴𝑀𝐻 𝐴𝐻𝐻           
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3.3.3 Determination of correction span for ANN forecast 

The frequencies of 𝜇𝜙𝑡,𝑡+1{𝑆𝑀} as they occur in the different 𝑆𝑀 classes 

were determined, recorded and used to develop the crisp Markov transition 

matrix (𝑃) as discussed in section XX (equations 18 and 20 ). Also, the fuzzy 

partition which shows the corresponding fuzzy states of the system 

൫𝑄 = 𝜇𝑆𝑀{𝑆𝑀}𝑖𝑗൯ [equations 19 and 21] was also determined.  

   

𝑃{𝑆𝑀}𝑖𝑗 =
𝑓{𝑆𝑀}𝑖𝑗

∑ 𝑓{𝑆𝑀}𝑖𝑗
3
𝑖=1

         {𝜇𝑆𝑀{𝑆𝑀}𝑖𝑗 > 0}           (20) 

𝜇𝑆𝑀{𝑆𝑀}𝑖𝑗 = max ൫𝐴𝑆𝑀{𝑆𝑀}𝑖𝑗൯                  (21) 

It is worth noting that 𝐴𝑆𝑀{𝑆𝑀}𝑖𝑗 is the set containing 𝜇𝑆𝑀{𝑆𝑀}𝑖𝑗 for  all 

𝜙𝑡,𝑡+1 whose fuzzy membership falls within that set. 

Based on P and Q and their derivatives, fuzzy-Markov transition probability 

matrix  𝑃̃ was then derived using equation 9. Let 𝑅 be the vector containing 

the upper bounds of the 𝑆𝑀 classes, then the correction span vector was 

obtained as, 

𝐹̃𝑐 = ∑ 𝑃̃𝑖𝑗𝑅𝑗
3
𝑗=1  {𝜇𝜙𝐾−1,𝐾{𝑆𝑀} > 0; 𝑅𝑗 = {0.33θ, 0.67θ, θ}}        

          (22) 

Finally, the ANN forecast correction span (𝜙𝐾,𝐾+1)  was obtained as, 

 𝜙𝐾,𝐾+1 = max ൫𝐹̃𝑐൯                           

(23) 

 

 

3.4 Forecast direction of vibration detection analysis 

Observe from section 3.3 that the approach used in obtaining 𝜙𝐾,𝐾+1 

involved the use of values in their absolute forms. As such, the expected 

forecast cumulative residual is expected to be of the form described in 

equation (24). However, the direction of a TS event is usually exclusive to a 

single direction per instance of occurrence. This is what is referred to as the 

TS direction of vibration. This section aims to determine this direction 

thereby determining a single 𝐶𝐾+1 value in the process.  

 𝐶𝐾+1 = 0.5(𝐶𝐾 ± 𝜙𝐾,𝐾+1)        (24) 
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The procedure essentially involves the creation of residual states, 

determination and classification of step transitions determined for  𝑟𝜀 , a 

procedure to obtain the forecast step transition and analysis to establish the 

forecast residual direction of vibration range (DVR). It is assumed here that 

𝑟𝜀 satisfies the conditions for normally distributed residuals. 

 

3.4.1 Creation of states for ANN prediction residuals 

The second step involved the determination of the number of residual step 

transitions that occur from one ANN prediction point to another. In this 

regard, we initially apply the principle of grey-Markov forecasting of 

fluctuating time series (Zhan-li & Sun, 2011) which requires that if  𝜌{𝑟𝐾
𝜀} 

is of a particular polarity, then 𝑟𝜀 be reversed from the most polar residual 

form of  𝜌{𝑟𝐾
𝜀} to the least polar form. For example, if  𝜌+{𝑟𝐾

𝜀}, that is if  𝑟𝐾
𝜀 

is of positive polarity, then we reverse the set of residuals to obtain a new 

set 𝑟̂𝜀 arranged from the most positive  𝑟𝑡
𝜀 to the least positive. 

In the next step, we a series of residual states 𝑆𝑖{𝑆𝑖 = (𝑟𝐿𝐵, 𝑟𝑈𝐵); 𝑖 =
1,2,3,…𝑊} for 𝑟̂𝐾

𝜀 using a fixed residual width 𝑤. In this work, the value of 

𝑤 was fixed using equation (25).  

 𝑤 = 0.5 ∗ (𝑀𝐴𝑃𝐸∗{𝐷𝜀} − 1) 
Where 𝑀𝐴𝑃𝐸∗{𝐷𝜀} is the integer form of  𝑀𝐴𝑃𝐸{𝐷𝜀}. 
As an example, suppose the vector 𝑉 containing five residual values  and 

𝑉 = 𝑟𝜀 = {−13.23,+4.71,+8.11,−10.24,+4.37}, then 

𝑟𝜀 = +8.11,+4.71,+4.37,−10.24, −13.23        (25)  

𝑆 = {−14.00,−10.50,−7.00,−3.50,0.00,3.50,7.00,10.50,+14.00}      
      (26) 

𝑆𝑖 = {𝑖 = 1: (−14.00,−10.50), 𝑖 = 2: (−10.50,−7.00),… , 𝑖
= 8: (10.50,14.00)} 

 

A few observations can be made from 𝑆𝑖 from equation 26. 

i. The states are created from point 0.00 and progressively extended to the 

positive and negative polar coordinates using the mean of 𝑟𝜀  as  𝑤, but 

numbered in order of  𝑟̂𝜀. 
ii. 𝑆𝑖 may be filled (occupies 𝑟𝑡

𝜀)  or empty. 

iii. Within each polar coordinate, 𝑆𝑖 generation should be terminated as soon 

as max (𝑟𝑡
𝜀) or min (𝑟𝑡

𝜀) has been accommodated by an already generated 

state except in cases of observation iv.   
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iv. An extra state is created to account for the imprecision in the residual 

location in situations where ∆𝑆𝑎 < ∆𝑆𝑏. 

∆𝑆𝑎 = {
|(|𝑚𝑖𝑛(𝑆𝑖

𝐿𝐵)| − |𝑟𝑡
𝜀{𝑚𝑖𝑛(𝑆𝑖)}|)|   

|(|𝑚𝑎𝑥(𝑆𝑖
𝑈𝐵)| − |𝑟𝑡

𝜀{𝑚𝑎𝑥(𝑆𝑖)}|)|
          (27) 

∆𝑆𝑏 = {
|(|𝑚𝑖𝑛(𝑆𝑖

𝑈𝐵)| − |𝑟𝑡
𝜀{𝑚𝑖𝑛(𝑆𝑖)}|)|   

|(|𝑚𝑎𝑥(𝑆𝑖
𝐿𝐵)| − |𝑟𝑡

𝜀{𝑚𝑎𝑥(𝑆𝑖)}|)|
          (28) 

3.4.2 Residual step transition determination and classification  

This stage involved the determination of the step transitions of the residuals. 

The location of each 𝑟𝑡
𝜀 in 𝑆𝑖 and the state number 𝑆𝑖{𝑟𝑡

𝜀}. The step 

transitions of  𝑟𝑡
𝜀 from point 𝑡 to 𝑡 + 1 were determined (equation 29) 

𝑇𝑡,𝑡+1 = 𝑆𝑖{𝑟𝑡+1
𝜀 } − 𝑆𝑖{𝑟𝑡

𝜀}         (29) 

The set of step transitions 𝑇 was then grouped into two classes namely 

regular transitions 𝑇𝑅 and irregular transitions 𝑇𝐼.  𝑇𝑅 are those step 

transitions that occur frequently while 𝑇𝐼 are those that may be termed 

abnormal or outlier swings. Based on preliminary observations on twenty 

normally distributed residuals, the swing classes are defined as 

𝑇𝑡,𝑡+1 ∈ {
𝑇𝑗
𝑅 {|𝑇𝑡,𝑡+1| ≤ 2}   

𝑇𝑗
𝐼   {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

         (30) 

Each transition class was further split into two classes in terms of the 

direction of the step transitions. As in the case of regular transitions, 𝑇𝑗
𝑅 =

{𝑇𝑗
𝑅+,  𝑇𝑗

𝑅−} where 𝑇𝑗
𝑅+,  𝑇𝑗

𝑅− are the regular step transitions in the forward 

and backward direction respectively for the transition start position 𝑆𝐾. 𝑇𝑗
𝐼 

was similarly defined. 

 

3.4.3 Forecast residual transition step determination  

Deploying the defined classes, the forecast transition step was then 

determined. Due to the imprecise nature of the system, forecast transitions 

can either in the forward or reverse direction. As such both directions had to 

be investigated towards obtaining the desired forecast direction. The forward 

and backward transition step candidates were first derived (equation 31). 

Their corresponding candidates for the desired forecast residual states 𝑆𝑘
+ 

and 𝑆𝑘
− repectively were located in 𝑆𝑖 (equation 32). The respective forecast 
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residual state boundary values 𝑟𝐿𝐵
𝜀 {𝑆𝑘

𝑞
} and 𝑟𝑈𝐵

𝜀 {𝑆𝑘
𝑞
}  and for all transition 

directions 𝑞 were then located. 

 

𝑇𝑘,𝑘+1 = {
𝑇̅𝑗
∗𝑅𝑞
   {𝑇𝑗

𝑅𝑞
≠ {∅}; ∀𝑞}

𝑇𝑗
𝑅𝑞
     {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑞}

             

 (31) 

𝑆𝑘
𝑞
 = {

𝑆𝐾 + 𝑇𝑘,𝑘+1   {𝑇𝑘,𝑘+1 − 𝐼𝑛𝑡൫𝑇𝑘,𝑘+1൯ ≤ 0; ∀𝑞}

𝑆𝐾 + 𝑇𝑘,𝑘+1 + 1      {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑞}                
               

  (32) 

 

3.4.4 Range of forecast residual direction and ANN forecast and 

prediction correction 

This phase of the analysis concerns the determination of the range of forecast 

residual direction (𝑉𝐿𝐵,  𝑉𝑈𝐵). This involved capturing potential scenarios 

that could result from the transition process. The aim is to guide the decision 

on the choice of the members of  𝑟𝐿𝐵
𝜀 {𝑆𝐾

𝑞} and 𝑟𝑈𝐵
𝜀 {𝑆𝐾

𝑞} that constitute 

(𝑉𝐿𝐵,  𝑉𝑈𝐵). The scenarios and the recommended forecast residual direction 

values are presented in equations (32-35). Note that the computation of  

𝐶𝐾+1
𝑎 [𝐶𝐾+1

𝑎 = 0.5(𝐶𝐾 + 𝜙𝐾,𝐾+1)] and  𝐶𝐾+1
𝑏 [𝐶𝐾+1

𝑏 = 0.5(𝐶𝐾 − 𝜙𝐾,𝐾+1)] 
using equation (24) was undertaken before proceeding.  

If  |𝑇𝐾−1,𝐾| ∈  𝑇𝑗
𝐼, then compute 𝑆𝐾

𝑎 , 

𝑆𝐾
𝑎 = 𝑆𝑘 +𝑚𝑖𝑛[𝑇𝑡,𝑡+1]                       (33) 

(𝑉𝐿𝐵, 𝑉𝑈𝐵) = {
[𝑚𝑖𝑛(𝑟ℎ

𝜀{𝑆𝐾
𝑎}),𝑚𝑎𝑥(𝑟ℎ

𝜀{𝑆𝐾})]     {𝜌
−{𝑇𝑗

𝐼}}

[𝑚𝑎𝑥(𝑟ℎ
𝜀{𝑆𝐾}),𝑚𝑖𝑛(𝑟ℎ

𝜀{𝑆𝐾
𝑎})]     {𝜌+{𝑇𝑗

𝐼}}
 

Else, compute 

𝑅𝜀{𝑆𝐾
𝑞} = 𝑟𝐿𝐵

𝜀 {𝑆𝐾
𝑞} ∪ 𝑟𝑈𝐵

𝜀 {𝑆𝐾
𝑞}    (34) 

If  𝜌{𝐶𝐾+1
𝑎 } = 𝜌{𝐶𝐾+1

𝑏 }, then 

Obtain 𝑅∗𝜀{𝑆𝐾
𝑞} ⊆  𝑅𝜀{𝑆𝐾

𝑞} such that, [൫𝜌{𝑅𝑖
∗𝜀} = 𝜌{𝐶𝐾+1

𝑞
}൯⋁(𝑅𝑖

∗𝜀 =

0),]   {∀𝑖}   

where 𝑅𝑖
∗𝜀 are elements of 𝑅∗𝜀  
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                (𝑉𝐿𝐵, 𝑉𝑈𝐵) = {
[𝑚𝑖𝑛൫𝑅𝑖

∗𝜀{𝑆𝐾
𝑞}൯,𝑚𝑎𝑥൫𝑅𝑖

∗𝜀{𝑆𝐾
𝑞}൯]     {𝜌−{𝐶𝐾+1

𝑞
}}

[𝑚𝑎𝑥൫𝑅𝑖
∗𝜀{𝑆𝐾

𝑞}൯,𝑚𝑖𝑛൫𝑅𝑖
∗𝜀{𝑆𝐾

𝑞}൯]     {𝜌+{𝐶𝐾+1
𝑎 }}

             

(35) 

Otherwise, 

  (𝑉𝐿𝐵, 𝑉𝑈𝐵) = {[𝑚𝑖𝑛൫𝑅𝑖
𝜀{𝑆𝐾

𝑞}൯,𝑚𝑎𝑥൫𝑅𝑖
𝜀{𝑆𝐾

𝑞}൯]            
(36) 

 

The scenario captured by equation 33 is that in which an irregular residual 

swing occurs at the period just preceding the forecast period ൫𝑇𝑗=𝐾
𝐼 ൯. In such 

a situation, the forecast DVR was fixed as that existing between the 𝑆𝐾 and 

the maximum state length of existing step transitions in the reverse direction 

of 𝑇𝑗=𝐾
𝐼 . If the first scenario is not observed, then we check for the scenario 

in the forecast cumulative residual candidates are of a similar polarity. If this 

exists, 𝐶𝐾+1
𝑞

 must be evaluated using the DVR with the same polar origin as 

𝐶𝐾+1
𝑞

 (equation 35). If all 𝑅𝜀{𝑆𝐾
𝑞}values are of non-similar poles to 𝐶𝐾+1

𝑞
, 

then 𝑅𝑖
𝜀{𝑆𝐾

𝑞} of magnitude closest to 𝐶𝐾+1
𝑞

are deployed to create the DVR. 

However, if non of the first two scenarios play out, then the DVR is fixed 

by the most negative and least negative values of the forecast residual state 

boundaries (equation 36). 

Once the (𝑉𝐿𝐵,  𝑉𝑈𝐵) has been determined, the 𝐶𝐾+1
𝑞

 that meets the conditions 

of the DVR (𝐶𝐾+1) is subsequently determined as the 𝐶𝐾+1
𝑞

 having the least 

proximity value from the midpoint of the DVR (equation 37). 

𝐶𝐾+1 = {

𝐶𝐾+1
𝑎   {|𝐶𝐾+1

𝑎 − 𝑉̅| < |𝐶𝐾+1
𝑏 − 𝑉̅|}

𝐶𝐾+1
𝑏   {|𝐶𝐾+1

𝑏 − 𝑉̅| < |𝐶𝐾+1
𝑎 − 𝑉̅|}

0.5(𝐶𝐾+1
𝑎 𝐶𝐾+1

𝑏 )  {𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}       

         

(37) 

𝐶𝐾+1 serves as the correction factor to the ANN forecast 𝐷𝐾+1
𝜀 . Thus, the 

corrected ANN forecast 𝐷̂𝐾+1
𝜀 was subsequently obtained (equation 38). 

𝐷̂𝐾+1
𝜀 = 

𝐷𝐾+1
𝜀

(1−0.01𝐶𝐾+1)
                  (38) 
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3.5 AFMIA forecast and prediction mechanism  

The ANN aspect of the model requires that 𝐷𝐾+1
𝜀  candidates be generated to 

ensure a statistically acceptable forecast. However, the iterative process 

involved in machine learning takes time and can affect model efficiency. In 

a bid to create a balance between the model’s effectiveness and efficiency, 

each run of the AFMIA was designed to iterate and obtain 5 

𝐷𝐾+1
𝜀  predictions within three epochs based on a specified start epoch (𝜀𝑠).  

Given that the AFMIA  model is a OWA model, the ANN forecast 

generation and the fuzzy-Markov process was repeated for each 𝐷̂𝐾+1
𝜀  output 

generated. 

Once the prediction and forecast process is completed and the set of 𝐷̂𝐾+1
𝜀  

obtained 𝐷̂, the single value 𝐺̂𝐾+1
𝜀  was obtained by computing the mean of  

𝐷̂ (MMean) or the method of the most frequent cumulative residual 𝐶𝐾+1
𝑞

 

(MMFCR) identified and used to forecast 𝐷̂𝐾+1
𝑞𝜀

 (equations 39 - 41). 

 

𝐺̂𝐾+1
𝜀 = {

∑𝐷̂𝑎

#𝐷̂𝑎
     {#𝐷̂𝑎 > #𝐷̂𝑏}

∑𝐷̂𝑏

#𝐷̂𝑏
     {#𝐷̂𝑏 > #𝐷̂𝑎}

              (39) 

Where, 

𝐷̂𝑎 = {𝐷̂(𝐾+1)𝑖
𝜀  {𝐶(𝐾+1)𝑖 = 𝐶(𝐾+1)𝑖

𝑎 }}               (40) 

 𝐷̂𝑏 = {𝐷̂(𝐾+1)𝑖
𝜀  {𝐶(𝐾+1)𝑖 = 𝐶(𝐾+1)𝑖

𝑏 }}             (41) 

The ANN predictions 𝐷𝑡
𝜀 {𝑡: 1… ,𝐾} were also corrected using a modified 

form of equation 38. The correction factors for the predictions were taken as 

the mean of their respective 𝑆𝑖{𝑟𝑡
𝜀} (equation 42) 

𝐷̂𝑡
𝜀 = 

𝐷𝑡
𝜀

൫1−0.01𝑆̅𝑖{𝑟𝑡
𝜀}൯

                   (42) 

 

4. Model implementation, validation and evaluation 

Given the computational complexity of the model, its process routines were 

implemented via a computer program developed using the Keras package 

with the Tensorflow backend of Python 3.7 environment. The model's 

prediction and forecasting capability was investigated by applying it to two 

secondary industrial accident data obtained from the literature (Bureau of 

Safety and Environmental Enforcement, 2018; Gov.UK, 2020). In both 
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cases, the datasets were split into a training set and a testing set using a 70-

30 ratio format.  

The model’s relative performance was investigated by comparing its outputs 

with those of two traditional models (exponential Smoothing [EXPSM] and 

ARIMA). The EXPSM and auto-ARIMA feature of the SPSS software was 

used for the traditional models' analysis. Also, AFMIA's performance was 

also compared with two non-traditional models Markov based models 

(Grey-Markov model (GMM) and the grey–fuzzy–Markov and pattern 

recognition model (GFMAPR). Computer programs were developed for the 

GMM and GFMAPR based on the theoretical principles provided by Zhan-

li and Sun (2011) and (Edem et al., 2018).  

4.1 Prediction and forecast accuracy 

In a bid to ascertain the predictive capability of AFMIA, the industrial 

accident data (referred here as Accident data sets AS1 and AS2 respectively) 

were characterized to determine their suitability for TS prediction (Table 3). 

It was observed in both industrial accident data sets that. This observation 

helped to reaffirm the observation that although dependent on organisation’s 

safety philosophy, industrial accidents occurrences are random, exhibiting 

fluctuating tendencies and non-seasonality characteristics. These 

characteristics fit the data profile for which the AFMIA was developed.  

 

Table 3: Characteristics of fire accidents data to which the AFMIA 

was applied 

Industrial 

Accidents Data 

                                Characteristics of data 

Variation Fluctuation Randomness 

AS1     0.2462 89% 114.61% 

AS2     0.2162 78% 76.81 

 

4.2 Expected performance of the model 

Given that the model was developed to obtain improved forecasts from the 

neural network predictor, the results obtained on the application of the model 

showed forecast superiority over the CNN-ANN base. It can be observed 

from Figures 3 and 4 that AFMIA exhibited good tracking and anticipation 
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capability notwithstanding the level of variation observed within the two 

data sets. A summary of the MAPE and RMSE performances of the base 

and corrector models (Table 4) were observed to be 18.44 and 3.48 

compared to 19.68 and 4.08 of the ANN. Similarly for AS2, 15.39 and 26.39 

were the respective method of evaluation outcomes obtained from AFMIA 

application, while the ANN forecast evaluation results were 20.13 and 

30.57. From the results and based on the data used, it is clear that the AFMIA 

is capable of correcting ANN thus improving the potential of improved 

occurrence monitoring.  
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Table 4: MAPE and RMSE of industrial accidents prediction by the ANN and AFMIA 
model 

 AS1 AS2 

Industrial  

Accidents 

Data Type 

In-sample Fit Out-of-sample In-sample Fit Out-of-sample 

Evaluation 

Results 

AFMIA ANN AFMIA ANN AFMIA ANN AFMIA ANN 

MAPE 19.50 15.35 18.439 19.679 8.052 7.171 16.828 21.012 
RMSE 26.54 7.12 3.483 4.080 9.557 7.683 26.803 31.389 

 

However, regarding the fitted or trained model results, Table 4 and Figures 

5 and 6, show that although both models performed reasonably well, the 

ANN predictor results were more superior. This infers a greater degree of 

deep learning over the AFMIA. This tendency to overlearn has been one of 

the problems that have hampered the progress of ANN as a TS predictor and 

as such a more accurate fitting may lead to an inaccurate forecast of data that 

was not used in the model development.   Further, the fitted data is only an 

end to a means in itself and is only recognized in situations of little or no 
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Figure 4: ANN and AFMIA OWA Forecasts for accident data AS2

IB
ADAN U

NIV
ERSITY

 LI
BRARY



 

63 
 
 

information regarding future occurrence accidents. As such it is not 

considered relevant in this study as the OWA technique used in the 

validation process provides a more reliable approach at determining the 

validity of future occurrences.  

4.3 AFMIA relative performances with the traditional and non-

traditional models 

The evaluation of the performance of the model with some of the existing 

models was also done. MAPE and RMSE results obtained from the 

application of the non-traditional model forms on AS1 were 49.94 and 10.20 

for ARIMA and 20.20 and 3.92 for ESM. Given the degree of variation in 

AS1, the less accurate results produced by ARIMA is expected due to its 

inability to handle strong non-linearity situations. However, the ESM 

produced results that were comparable in accuracy to the AFMIA (Table 5).  

However, for AS2, both models produced less accurate forecasts in 

comparison to the AFMIA (Table 5). 

 

This result indicated that the non-traditional forecasting model types may be 

more accurate in industrial accident prediction.  This view was strengthened 

by the results obtained from the non-traditional models MSGM and 

GFMAPR (Table 4).  
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Figure 5: ANN fitted predictions for accident data AS1 and corresponding AFMIA correction
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Figure 6: ANN fitted predictions for accident data AS2 and corresponding AFMIA correction
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It was observed that for AS1, the MSGM forecasts with MAPE of 14.82 and 

RMSE of 2.94 were more accurate than those of the AFMIA (MAPE of 

18.44 and RMSE of 3.48) although slightly so. Similarly with respect to 

AS2, the performance evaluation results of the GFMAPR (MAPE = 16.76; 

RMSE = 27.63) generally matched those of the AFMIA (MAPE = 16.83; 

RMSE = 26.80). This could indicate the capability of the fuzzy and Markov 

component of the AFMIA, MSGM and GFMAPR to capture more 

accurately the imprecision that exists in industrial accident data. Generally, 

the AFMIA performed well as an industrial-accidents forecasting tool when 

compared with existing forecasting models. 

 

5. CONCLUSIONS 

This study developed a hybrid model (AFMIA) for industrial accident 

forecasting based on the use of neuro-fuzzy-Markov methods. The model 

was tested and validated using fitted and out-of-sample data from secondary 

sources. Also, the model’s capability and accuracy were evaluated against 

existing traditional and non-traditional forecasting models.  

 Results obtained showed that the developed model produced more accurate 

forecasts than the ANN model as well as all the traditional models 

considered. However, AFMIA produced less accurate predictions in some 

cases when evaluated against the non-traditional models. 

AFMIA relative prediction superiority ranges evaluated in terms of the 

MAPE were 6 – 25%, 9-170%, and 20 – 26% over the ANN, traditional 

models and non-traditional models respectively. The developed model’s 

relative prediction inferiority range was 0 – 12. Thus based on the limit of 

Table 5: MAPE and RMSE of industrial accidents prediction by evaluated traditional and non- 

traditional forecasting models 

 AS1 AS2 

Industrial 

Accidents 

Data Type 

Out-of-sample Out-of-sample 

Evaluation 

Results 
ARIMA ESM MSGM GFMAPR ARIMA ESM MSGM GFMAPR 

MAPE 49.936 20.204 14.818 20.208 20.129 21.051 21.138 16.756 

RMSE 10.20 3.917 2.943 4.216 31.794 30.800 32.789 27.633 
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the quantitative evaluation done, the model is can be used in carrying 

predictions without the need for complex ANN architectural development 

processes. In addition, the obtained results make the model effective and 

adequate for the prediction, anticipation and management of industrial 

accidents. 

This work aims to present a perspective on the potential of combining 

machine learning techniques and related soft computing methods in the 

development of models with new and better capabilities through the 

development of the novel ANN-fuzzy-Markov industrial accident 

forecasting model. Further, the study increases the scope of industrial 

accidents forecasting as it opens up the window of the potential of 

combining machine learning techniques and Markov based techniques in 

industrial accidents investigation and management. 

The field of machine learning in forecasting is still unfolding. There is still 

a lot of potential areas of research that can be carried out to usher in 

improvement. One such is related to the understanding of the multiple local 

optima problem that impedes satisfactory machine learning based 

forecasting. Another area worth investigating relates to the determination of 

the number and unit size of swing residuals that can produce the most precise 

neuro-fuzzy-Markov predictions. 

It is hoped that this study will motivate more involvement from researchers 

and stakeholders towards improved safety management through the use of 

these forms of soft computing methods.    
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