Journal ofScience Research (2014) Vol. 13: 133-142

On the Level of Precision of the Wavelet Neural Network in Rainfall Analysis
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Abstract

This research combines the efficiency of the artificial neural network and wavelet transform in modelling rainfall.
The data used were decomposed into continuous wavelet signals on a scale of 48. Each of the decomposed series
was subjected to correlation test with the original data. Instead of using all the series, ten series were selected on the
basis of high correlation with die original data. These series included CWT 1, CWT 2, CWT 4, CWT 3, CWT 6,
CWT 8, CWT 5, CWT 10, CWT 12, and CWT 7 (according to rank). The analysis showed that except in extremely
rare cases, all the series performed optimally compared to the original data. The result of the study has been able to
show that using the continuous w'avelet transform in the ANN technique, a better performance of the network is

observed.
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Introduction

The artificial neural network has been found
to model rainfall more accurately than
conventional methods. This is because the
artificial neural network makes use of past
events of a phenomenon in predicting the
future by means of learning and training.
Research has shown that combining the
artificial  neural  network  with  other
mathematical functions and models makes
the resulting model more efficient. Recently,
the discrete wavelet transform has been used.
However, it is known that rainfall data is
rather continuous than discrete. When
observed as discrete, then the interest would
be on the probability of occurrence. This
study therefore uses the continuous form of
the wavelet transform. A wavelet network
model makes use of the merits of wavelet
analysis and artificial neural network, so it
has excellent performance in simulation and
forecast. Wavelet decomposition is a way of
analyzing a signal both in time and frequency
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domain. The wavelet spectrum based on
continuous wavelet transform (CWT), is a
natural extension of the conventional Fourier
spectrum analysis and short time Fourier
spectrum analysis which are commonly used
in climatologic time series analysis [9],

There have been considerable literatures
on the modelling of rainfall data on daily
basis. The majority of these models are
nevertheless  derived empirically.  The
significance of these models in meteorology
is possibly attached to the fitted parameters.
Most researchers make use of the gamma
distribution  for describing precipitation
values for a variety of reasons [13, 28, 23,
26], especially because the gamma distri-
bution is bounded on the left at zero. This is
important  for precipitation applications
because there can never be a negative rainfall.
Thus, a distribution that excludes negative
values is readily applicable.

Recently, artificial neural networks
(ANN) has been used in modelling rainfall.
ANN constitute a usefi.il tool to predict and
forecast various hydrological variables and
are used extensively in water resources
research [6, 24], The artificial neural network
models are frequently employed for rainfall
forecasting [22, 10], [11] used a neural
network to forecast rainfall intensity fields in
space. According to [15], majority of the
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early work in this area have been mainly
theoretical, concentrating on neural network
performance with artificially generated
rainfall-runoff data.

[18] used the combined benefits of the

discrete wavelet-neural networks (DWNN) in
the prediction of daily precipitation in
Turkey. Wavelet transform can produce a
good local representation of the signal in boti
the time and frequency domains, and
provides considerable information about the
structure of the physical process to be
modeled [29, 19, 17], [21] predicted monthly
rainfall using WNN analysis. Some other
areas that wavelet neural network have been
used include some selected methods of
thresholding for wavelet regression, SAR
image segmentation, solar radiation
forecasting, and forecasting IIP growth with
yield spreads [2, 27, 5, 20],

Materials and Methods

Wavelets are being used in representing
signals functions or images due to the fact
that they allow for large compression ratios.
The wavelet transform of a signal evolving in
time depends on two variables - frequency
(that is, scale) and time. Thus, wavelets
provide a tool for time-frequency
localization.

The wavelet transform is given by

Twav/)(a,b) = laj-H fdtf(tw r—

(Twav/)(a,b) = la] J ( A
Restricting  a-b to
a=ap b =kboap,

discrete
f ke25then

values,

(2)

where ™ is known as the mother wavelet.

. | ij/(t) =0
In both cases, it is assumed that

Wavelet methods have been most studied
in the non parametric regression problem of
estimating a function * on the basis of
observations >4 at time points ti. This is
modeled as

M=/TO - er i= 1,2..n (3
and ej"™(0,a ) Js |lie nojse 1].  [16]
noted some authors such as [12], [3], and
[14], who did not assume any distribution for
the white term but noted that they are iid
(0, er)
Ifwe consider the regression model,

y —ctl + X\3 4- ¢ (4%

where, >Te S;l, a e K is an intercept, 1 is an
n* dimensional vector of ones, " e
is the matrix of the signals, he & s a vector

of coefficients, and e - s is the white, or
stochastic or error term ([4] 2008).

Now, defining a wavelet transformation
by an orthogonal matrix [25], say
W e RpAp "such that =J, | being the
identity matrix.

Then, we can write = ai+ xiP , so that
in matrix form, (3) can be written as

y=cd+XWWP+e = al+2ZP* +e (b

where, z = is the matrix of wavelet
coefficients corresponding to the series in *
and = ‘P is the new regression vector.

The data presented to the network were
decomposed into wavelet forms. We recall
that wavelet transforms are mathematical
functions that cut up data, -functions or
operators into different frequency
components, and then study each component
with a resolution matched to its scale. The
continuous wavelet transform (CWT) is used
in this study, which makes use of continuous
wavelets as functions.
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Fig. 1: Wavelet Transform of Rainfall in Ibadan for 200 days.

The decomposition here is based on a
scale of 48 using the MATLAB in-code. This
means that the original data was decomposed
into 48 sub-time series. It would be
unnecessary to use each sub-time series to
run the MATLAB code. The first 10 highest
ranked sub-time series were selected for the
analyses. These included CWT 1, CWT' 2,
CWT 4, CWT 3, CWT 6, CWT 8, CWT 5,
CWT 10, CWT 12 and CWT 7 (in that order).

A network with 100 hidden neurons was
chosen for the purpose o.f generality, except
for the convolutions where both 100 and 10
hidden neurons were used (since the network
with 10 neurons had lower error variances.
For the individual transfer functions, the
functions that have been shown to perform
best were used to investigate the continuous
wavelet neural network (CWNN). These
functions include:

ISSN 11179333

(i) Hyperbolic Tangent transfer function
(it) Hyperbolic Tangent Sigmoid transfer
function
(i) Symmetric
function

Saturating Linear transfer

Results and Discussions

The analysis begins with the construction of
the time plots of the original rainfall data and
the decomposed  continuous  wavelet
transform data on a 48 scale. The original
data was plotted on graph CI, while the
decomposed data were plotted on the
remaining graphs. That is, in Figure 2, C2 to
C49 represent the entire 48 decomposed
CWT data. From the plots, it could be seen
that the time plots of the CWT shows an
evenly distributed rainfall pattern. We see
that the plots become more sparsely
distributed along the scale.
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Time Series Plot of the original rainfall data and the decomposed CYVT
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Fig. 2: Time Series Plot of the original rainfall data and the decomposed CWT.

In this study, twenty transfer functions
were initially used for network training with
the help of MATLAB, but fourteen emerged
workable. MATLAB 2009a was used in
developing the program for training the
network.  Five hidden layers were used.
These are 2, 5, 10, 50 and 100. The number
of iterations involved in this work is 1000.
Daily data were used to train the network (for
200 days). Twenty transfer functions were
used in the network. However, six transfer
functions, namely Linear transfer function,
Positive Linear transfer function, Hyperbolic
Sine transfer function, Hyperbolic Cosine
transfer ~ function,  exponential transfer
function and gamma transfer function did not
yield any output in 2, 5 and 10 hidden layers
network. Nevertheless, in the higher hidden
layers of 50 and 100, the Linear transfer
function yields outputs, while others in the
list of non-function transfer functions did not
yield any output. The MATLAB code was

trained to plot the error between the input and
the output. The principle of efficiency was
used in selecting the best performing transfer
function.

Inspecting the general performances of
the network based on the errors generated by
the hidden neurons, outstanding results were
obtained as follows.

The Hyperbolic Tangent transferfunction
ranked best in the overall performance with
error variance 1.343777949, followed by the
Hyperbolic  Tangent Sigmoid transfer
function with error variance 2.132441698 and
the Symmetric Saturating Linear transfer
function, having error variance 22.04938194.
As expected, the Radial Basis transfer
function ranked last in overall performance.
This can be seen in Table L We can note the
result from Figures 3a and 3b. The graph
shows that as the hidden layers increases,
error variance due to Symmetric Saturating
Linear transfer function reduces drastically.

ISSN 111793.33



Table 1:Error Variances of the Transfer Functions

OVERALL RANKING

Competitive transfer function

Hard Limit transfer function

Symmetric Hard Limit transfer function
Loe-sismoid transfer function

Inverse transfer function

Linear transfer function

Radial Basis transfer function

Saturating Linear transfer function
Symmetric Saturating Linear transfer function
Softmax transfer function

Hyperbolic Tangent Sigmoid transfer function
Triangular Basis transfer function

Hyperbolic Tangent transfer function

Sine transfer function

Cosine transfer function

Hidden

Neuron-2
5770
78192
12000101

222200672
10047 713244

ARAB67713
13153307
RBIN23AB
643437

1068217
10730008
65180080
290672142
27AG03%18

Hidden

Neuron -5
23848348
1912435
12607731
3RLOL73:8
0018311123

97621743

1R 739%
191779BR
1R9M0620
QOBL7430
917168851
0003040
2068646
207(r108

Hidden

Neuron - 10
BB
1657805538
151224912
26521818
171453346

515
1892290583
14381490
Ap 4864
00006425

11887494
Q003018007
20706r13
16130748

Hidden

Neuron-50
1301934749
RIBIEBD
6L87730151
3B581521
21385193
1518137
134871540
I B30
21174856
197665/35
00M56456
633656

000048087
13180756
150618724

Hidden
Mean

Neuron -100

317.1800/A 217531853
2137343 175048567
8872234 11490872
214630 2879003853
AR 76787 3108164712
1629100612 8078116
263353187 833047504
SBANT77 264005067
134184 20/931A
2033 0454105
QOIS0 2132441608
PREIAD BP8IAIS
QO0300E8BL 134377790
Q4l/edx4l 1B 726167
10059346 15563138

Fig. 3a: Graph of error variance of the best three transfer functions.
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Fig. 3b: Overall Performances of Error Variance of the Transfer Functions.

In the results involving wavelets, it is
found in every analysis that the continuous
wavelet neural network gives better results.
Tables 3a - 3c consist of the CWNN results
of the best performing transfer functions
earlier discovered. These are the Hyperbolic
Tangent transfer  function, Hyperbolic
Tangent Sigmoid transfer function and the
Symmetric  Saturating  Linear  transfer

function. For the Hyperbolic Tangent transfer
function, CWNN resulted in a range of error
variances, 0.000729592 - 0.009715933, with
CWT 1 recording the least, and CWT 6
recording the highest. This is in contrast to
the result of the function using the original
data, having error variance 0.060099581,
which is higher.

Table 3a: CWNN Result of Hyperbolic Tangent Transfer Function

Mean Error Mean Absolute

Hidden Layer -
100

Sub-Time Series 1
Sub-Time Series 2
Sub-Time Series 4
Sub-Time Series 3
Sub-Time Series 6
Sub-Time Series 8
Sub-Time Series 5

(act-pred)
0.00389005
0.004260697
-0.008116418
-0.033570647
-0.005403483
0.001421891
0.019393035

Sub-Time Series 10 -0.003360199
Sub-Time Series 12 -0.01788209

Sub-Time Series 7

0.023131841

Error
0.013951741
0.024978109
0.030443781
0.05209204
0.071986567
0.023469652
0.032890547
0.046734328
0.022665174
0.039681095

Variance

0.000729592
0.003239021
0.002145085
0.004102457
0.009715933
0.002512283
0.002339264
0.005444832
0.00073663

0.002958337

ISSN 11179333
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Table 3b: CYVNN Result of Hyperbolic Tangent Sigmoid Transfer Function

Hidden Layer - Mean Error Mean Absolute

100 (act-pred)
Sub-Time Series 1 0.001477114
Sub-Time Series 2 0.035310448
Sub-Time Series 4 0.004956716
Sub-Time Series 3 0.028981592
Sub-Time Series 6 -0.005168657
Sub-Time Series 8 0.004595522
Sub-Time Series 5 0.014223881
Sub-Time Series 10 -0.001948756
Sub-Time Series 12 -0.007950249
Sub-Time Series 7 -0.038218905

Variance

Error
0.014383582
0.131156219
0.029195522
0.048633333
0.028030348
0.040067164
0.035047761
0.016926866
0.025757214
0.043672637

0.000739871
0.039282011
0.002329514
0.004778149
0.002541222
0.006018716
0.002771785
0.000814949
0.001418593
0.002743456

Table 3c: CWNN Result of Symmetric Saturated Linear Transfer Function

Hidden Layer -

100 (act-pred)
0.012547761
0.015978607
-0.028518408
-0.054432338
0.031933333
-0.035263184
-0.005807463
Sub-Time Series 10 0.053563682
Sub-Time Series 12 -0.004406468
-0.045742289

Sub-Time Series 1
Sub-Time Series 2
Sub-Time Series 4
Sub-Time Series 3
Sub-Time Series 6
Sub-Time Series 8

Sub-Time Series 5

Sub-Time Series 7

In the case of Hyperbolic Tangent
Sigmoid transfer function, it is only CWT 2
with error variance 0.039282011 that is
higher than the result obtained using the
original data. While in the case of the
Symmetric  Saturating  Linear transfer
function, all the sub-time series data show
smaller variances compared to the result from
the original result.

Conducting the test of hypotheses on the
results obtained, it was found out that there
are significant differences between each
decomposed data and the original data as
shown on Tables 4 and 5. The null
hypothesis in the test for difference in the
means stated that there is no difference.

ISSN 11179333

Mean Error Mean Absolute

Error
0.083100995
0.216885075
0.217135323
0.286941791
0.247026866
0.352124876
0.285989552
0.381137811
0.407753731
0.270354229

Variance

0.099012345
0.493311007
0.42369717

0.709184674
0.427719785
0.951654567
0.587782167
0.791104316
0.763670662
0.62697559

Three alternative
constructed. These are:
1 Pi-po<o;
2. Pi-Po-0"
3@ hi- ho>o0,
where hi is the mean of the 1
decomposed data.
It is noted that only the first alternative

hypothesis has the P - va’ue > (that is
1.0000). The other two has P - value < 0.05
(that is, 0.0000).

The variance ratio test was used to test the
validity of the model based on the error
generated by the network from each
decomposed data. Similar to the previous test,
three alternative hypotheses were also
constructed, which are as follows:

hypotheses were
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a—d<0
E-AD 05
-Oo >0,

where, ffi is the standard deviation of the

decomposed data

The test shows that at
sub-series 1, 2, 4 and 6 are significant, while
>0 ,subseries I, 2,4,6and 5

at

are significant.

ai -

Table 4: Sample Statistics of the Original Data and the CWNN

Original Data
Sub-Series 1
Sub-Series 2
Sub-Series 4
Sub-Series 3
Sub-Series 6
Sub-Series 8
Sub-Series 5
Sub-Series 10
Sub-Series 12
Sub-Series 7

Table 5: Paired Sample Statistics of the Original Data and the CWNN

Original Data - Sub-Series 1
Original Data - Sub-Series 2
Original Data - Sub-Series 4
Original Data - Sub-Series 3
Original Data - Sub-Series 6
Original Data - Sub-Series 8
Original Data - Sub-Series 5
Original Data - Sub-Series 10
Original Data - Sub-Series 12
Original Data -Sub-Series 7

Mean

6.081095
-0. 0105473
0.0268657
0.1049254
0.0257711
0.1443781
0.1827363
0.2015423
0.2196518
0.2327861
0.1508955

Standard
Deviation

14.33177
5.268888
11.987

12.90514
13.10204
11.59102
11.85019
12.08643
12.79639
13.73769
11.57113

95% Confidence Interval of
the Difference

Lower

4.605974
4.788468
4.412868
4.331777
4.078572
3.893714
3.841665
3.731568
3.608266
3.809

Upper

7.577309
7.31999

7.5.39471
7.77887

7.794861
7.903002
7.917439
7.991318
8.088351
8.051398

Standard Error of

the Mean

1.010885

0. 3716387
0.8454978
0.9102586
0.9241467
0.8175676
0.8358478
0.852511

0.9025877
0.9689816
0.8161646

t

8.0853
9.4317
7.5381
6.9278
6.3002
5.8020
5.6892
5.4267
5.1482
5.5128

ai~ao”™ 0 ;

These can be seen on Table

p - value at
Hp Uy- no =0 and
Ht: jil- go >0

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Table 6: Variance Ratio Test of the Original Data and the CWNN

Upper Tail

(FIT)
Original Data - Sub-Series 1 171.375
Original Data - Sub-Series 2 7.016
Original Data - Sub-Series 4 9.256
Original Data - Sub-Series 3 3.314
Original Data - Sub-Series 6 9.142
Original Data - Sub-Series 8 1.830
Original Data - Sub-Series 5 4.807
Original Data - Sub-Series 10 2.653
Original Data - Sub-Series 12 2.834
Original Data -Sub-Series 7 4.232

Conclusion

The time plots of the actual data was
scattered and all points fall on the positive
side of the wvertical axis, whereas the
decomposed data were evenly distributed on
both sides of the vertical axis. However, it
was noticed that the clustering of the data
became sparsely distributed as the correlation
ofthe decomposed data with the original data
became weaker. Optimal performances were
noticed with Hyperbolic Tangent (tanli),
Hyperbolic Tangent Sigmoid (tansig) and
Symmetric  Saturating Linear (satlins).
Generally, as the hidden neurons increased,
the error variances reduced, except in some
cases where a L-shape is formed in the
behaviour of the error variances. The data
was decomposed to continuous wavelet
analysis on a scale of 48 (that is, forty-eight
series). Ten series were selected on the basis
of high correlation with the original data.
These series included'CWT 1, CWT 2, CWT
4, CWT 3, CWT 6, CWT 8, CWT 5, CWT
10, CWT 12, and CWT 7 (according to rank).
The analysis showed that except in extremely
rare cases, all the series performed optimally
compared to the original data. The result of
the study has been able to show that using the
continuous wavelet transform in the ANN
technique, a better performance of the
network is observed.
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p - value at

p - value at

Lower Tail i Gj- a0=0 Hj: et - a0 > 0
(FL) =i
0.006 0.0000 0.0000
0.143 0.0319 0.016
0.108 0.0159 0.008
0.302 0.1705 0.0853
0.109 0.0164 0.0082
0.546 0.4806 0.2403
0.208 0.0776 0.0388
0.377 0.2602 0.1301
0.353 0.2305 0.1153
0.236 0.1027 0.0513
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