
Journal o f Science Research (2014) Vol. 13: 133-142

On the Level of Precision of the Wavelet Neural Network in Rainfall Analysis
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Abstract
This research combines the efficiency of the artificial neural network and wavelet transform in modelling rainfall. 
The data used were decomposed into continuous wavelet signals on a scale of 48. Each of the decomposed series 
was subjected to correlation test with the original data. Instead of using all the series, ten series were selected on the 
basis of high correlation with die original data. These series included CWT 1, CWT 2, CWT 4, CWT 3, CWT 6, 
CWT 8, CWT 5, CWT 10, CWT 12, and CWT 7 (according to rank). The analysis showed that except in extremely 
rare cases, all the series performed optimally compared to the original data. The result of the study has been able to 
show' that using the continuous w'avelet transform in the ANN technique, a better performance of the network is 
observed.
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Introduction
The artificial neural network has been found 
to model rainfall more accurately than 
conventional methods. This is because the 
artificial neural network makes use of past 
events of a phenomenon in predicting the 
future by means of learning and training. 
Research has shown that combining the 
artificial neural network with other 
mathematical functions and models makes 
the resulting model more efficient. Recently, 
the discrete wavelet transform has been used. 
However, it is known that rainfall data is 
rather continuous than discrete. When 
observed as discrete, then the interest would 
be on the probability o f occurrence. This 
study therefore uses the continuous form of 
the wavelet transform. A wavelet network 
model makes use of the merits of wavelet 
analysis and artificial neural network, so it 
has excellent performance in simulation and 
forecast. Wavelet decomposition is a way of 
analyzing a signal both in time and frequency

Christopher Godwin Udomboso*1, Godwin Nwazu 
Amahia1 and Isaac Kwame Dontwi2
'Department o f Statistics 
University o f Ibculan, Ibadan. Nigeria 
department o f Mathematical Science 
Kwame Nkrumah University o f Science and 
Technolog)', Kumasi, Uliana
*Corresponding Author’s E-mail: 
eg. itdoinboso(d)gniail. com. 
eg. ndi mibosotyniail. m. edu. ng

domain. The wavelet spectrum based on 
continuous wavelet transform (CWT), is a 
natural extension of the conventional Fourier 
spectrum analysis and short time Fourier 
spectrum analysis which are commonly used 
in climatologic time series analysis [9],

There have been considerable literatures 
on the modelling of rainfall data on daily 
basis. The majority o f these models are 
nevertheless derived empirically. The 
significance of these models in meteorology 
is possibly attached to the fitted parameters. 
Most researchers make use of the gamma 
distribution for describing precipitation 
values for a variety of reasons [13, 28, 23, 
26], especially because the gamma distri­
bution is bounded on the left at zero. This is 
important for precipitation applications 
because there can never be a negative rainfall. 
Thus, a distribution that excludes negative 
values is readily applicable.

Recently, artificial neural networks 
(ANN) has been used in modelling rainfall. 
ANN constitute a usefi.il tool to predict and 
forecast various hydrological variables and 
are used extensively in water resources 
research [6, 24], The artificial neural network 
models are frequently employed for rainfall 
forecasting [22, 10], [11] used a neural
network to forecast rainfall intensity fields in 
space. According to [15], majority of the
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early work in this area have been mainly 
theoretical, concentrating on neural network 
performance with artificially generated 
rainfall-runoff data.

[18] used the combined benefits of the 
discrete wavelet-neural networks (DWNN) in 
the prediction of daily precipitation in 
Turkey. Wavelet transform can produce a 
good local representation of the signal in boti 
the time and frequency domains, and 
provides considerable information about the 
structure of the physical process to be 
modeled [29, 19, 17], [21] predicted monthly 
rainfall using WNN analysis. Some other 
areas that wavelet neural network have been 
used include some selected methods of 
thresholding for wavelet regression, SAR 
image segmentation, solar radiation 
forecasting, and forecasting IIP growth with 
yield spreads [2, 27, 5, 20],

Materials and Methods
Wavelets are being used in representing 
signals functions or images due to the fact 
that they allow for large compression ratios. 
The wavelet transform of a signal evolving in 
time depends on two variables -  frequency 
(that is, scale) and time. Thus, wavelets 
provide a tool for time-frequency 
localization.

The wavelet transform is given by

(Twav/) (a ,b ) = la j-H  f  d t f ( tW ^ — -^1
J V a  )  ( 1 )

Restricting a- b to discrete values, 

a = a,0- b = kb0a,0, f k e 2 5then

(2)

where ^  is known as the mother wavelet.
| i|/(t) = 0

In both cases, it is assumed that

Wavelet methods have been most studied 
in the non parametric regression problem of
estimating a function * on the basis of 
observations >4 at time points t i . This is 
modeled as

Vf = /T O  -  er i=  1,2 ..... n (3)

and ej '"^’(0, cr ) js |.|ie nojse 1]. [16]
noted some authors such as [12], [3], and 
[14], who did not assume any distribution for 
the white term but noted that they are iid

(0, er)
If we consider the regression model, 

y  — ctl + X\3 4- e (4 )̂

where, >T e S ;l, a e K is an intercept, 1 is an 
11 “  dimensional vector of ones, ^ e 
is the matrix of the signals, h e & is a vector
of coefficients, and e - s  is the white, or 
stochastic or error term ([4] 2008).

Now, defining a wavelet transformation 
by an orthogonal matrix [25], say 
W e R p A p  ̂ such that = J , I being the 
identity matrix.
Then, we can write = a i + xiP , so that 
in matrix form, (3) can be written as

y  = cd + X W W 'P  + e =  a l  + ZP* + e (5)

where, z = is the matrix of wavelet 
coefficients corresponding to the series in ^ 
and = ‘P is the new regression vector.

The data presented to the network were 
decomposed into wavelet forms. We recall 
that wavelet transforms are mathematical 
functions that cut up data, -functions or 
operators into different frequency 
components, and then study each component 
with a resolution matched to its scale. The 
continuous wavelet transform (CWT) is used 
in this study, which makes use of continuous 
wavelets as functions.

ISSN 11179333

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Udomboso, el ol.: On the Leva! o f  Precision o f  the Wavelet Neural Network in Rainfall Analysis 135

Absolute Values of Ca,b  Coefficients for a = 1 2 3 4 5 . . .

20 40 60 80 100 120 140 160 180 200
time (or space) b

Fig. 1: Wavelet Transform of Rainfall in Ibadan for 200 days.

The decomposition here is based on a 
scale of 48 using the MATLAB in-code. This 
means that the original data was decomposed 
into 48 sub-time series. It would be 
unnecessary to use each sub-time series to 
run the MATLAB code. The first 10 highest 
ranked sub-time series were selected for the 
analyses. These included CWT 1, CWT' 2, 
CWT 4, CWT 3, CWT 6, CWT 8, CWT 5, 
CWT 10, CWT 12 and CWT 7 (in that order).

A network with 100 hidden neurons was 
chosen for the purpose o.f generality, except 
for the convolutions where both 100 and 10 
hidden neurons were used (since the network 
with 10 neurons had lower error variances. 
For the individual transfer functions, the 
functions that have been shown to perform 
best were used to investigate the continuous 
wavelet neural network (CWNN). These 
functions include:

(i) Hyperbolic Tangent transfer function
(ii) Hyperbolic Tangent Sigmoid transfer 
function
(iii) Symmetric Saturating Linear transfer 
function

Results and Discussions
The analysis begins with the construction of 
the time plots of the original rainfall data and 
the decomposed continuous wavelet 
transform data on a 48 scale. The original 
data was plotted on graph C l, while the 
decomposed data were plotted on the 
remaining graphs. That is, in Figure 2, C2 to 
C49 represent the entire 48 decomposed 
CWT data. From the plots, it could be seen 
that the time plots of the CWT shows an 
evenly distributed rainfall pattern. We see 
that the plots become more sparsely 
distributed along the scale.
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Time Series Plot of the original rainfall data and the decomposed CYVT
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Fig. 2: Time Series Plot of the original rainfall data and the decomposed CWT.

In this study, twenty transfer functions 
were initially used for network training with 
the help of MATLAB, but fourteen emerged 
workable. MATLAB 2009a was used in 
developing the program for training the 
network. Five hidden layers were used. 
These are 2, 5, 10, 50 and 100. The number 
of iterations involved in this work is 1000. 
Daily data were used to train the network (for 
200 days). Twenty transfer functions were 
used in the network. However, six transfer 
functions, namely Linear transfer function, 
Positive Linear transfer function, Hyperbolic 
Sine transfer function, Hyperbolic Cosine 
transfer function, exponential transfer 
function and gamma transfer function did not 
yield any output in 2, 5 and 10 hidden layers 
network. Nevertheless, in the higher hidden 
layers of 50 and 100, the Linear transfer 
function yields outputs, while others in the 
list of non-function transfer functions did not 
yield any output. The MATLAB code was

trained to plot the error between the input and 
the output. The principle of efficiency was 
used in selecting the best performing transfer 
function.

Inspecting the general performances of 
the network based on the errors generated by 
the hidden neurons, outstanding results were 
obtained as follows.

The Hyperbolic Tangent transfer function 
ranked best in the overall performance with 
error variance 1.343777949, followed by the 
Hyperbolic Tangent Sigmoid transfer 
function with error variance 2.132441698 and 
the Symmetric Saturating Linear transfer 
function, having error variance 22.04938194. 
As expected, the Radial Basis transfer 
function ranked last in overall performance. 
This can be seen in Table 1. We can note the 
result from Figures 3a and 3b. The graph 
shows that as the hidden layers increases, 
error variance due to Symmetric Saturating 
Linear transfer function reduces drastically.
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Table 1:Error Variances of the Transfer Functions

H id d e n H id d e n H id d e n H id d e n H id d e n
O V E R A L L  R A N K I N G

N e u r o n - 2 N e u r o n  -  5 N e u r o n  - 10 N e u r o n - 5 0 N e u r o n  - 1 0 0

M e a n R a n k

C o m p e t i t iv e  t r a n s f e r  f u n c t io n 204.5773265 223.8483493 203.0092008 139.1934749 317.1809794 217.5618662 10
H a r d  L im it  t r a n s f e r  f u n c t io n 207.8392972 191.248995 165.7895568 96.80318859 213.7932459 175.0948567 7
S y m m e tr ic  H a r d  L im it  t r a n s f e r  f u n c t io n 129.0696401 182.6077394 115.1224912 61.87730151 85.87222364 114.9098792 5
L o e - s is m o id  t r a n s f e r  fu n c t io n 222.299622 331.0173098 265.5221818 268.5481521 352.1146609 287.9003853 12
I n v e r s e  t r a n s f e r  fu n c tio n 14947.78244 0.018911123 171.4533406 218.8261943 202.7426787 3108.164712 14
L in e a r  t r a n s f e r  fu n c t io n 15.16966137 162.9709612 89.07031126 4
R a d ia l  B a s i s  t r a n s f e r  f u n c t io n 94.48467713 97.66291743 589.5135165 13487.15479 27633.56187 8380.475554 15
S a tu r a t i n g  L in e a r  t r a n s f e r  f u n c t io n 135.5935607 135.732966 169.2290683 350.7622309 528.9470077 264.0529667 11
S y m m e tr ic  S a tu r a t i n g  L in e a r  t r a n s f e r  f u n c t io n 73.30123498 19.12790579 14.39814939 2.117148666 1.302470864 22.04938194 3
S o f tm a x  t r a n s f e r  fu n c t io n 206.4595437 179.9706259 202.4876644 197.6673605 236.0353431 204.5241075 9
H y p e rb o l ic  T a n g e n t  S ig m o id  t r a n s f e r  f u n c t io n 10.6083217 0.003174559 0.000954226 0.041566456 0.008191549 2.132441698 2
T r i a n g u la r  B a s i s  t r a n s f e r  f u n c t io n 107.3976903 91.71668251 118.874954 2386.839526 9959.251909 2532.816152 13
H y p e rb o l ic  T a n g e n t  t r a n s f e r  fu n c t io n 6.651800849 0.002590439 0.003918007 0.00048087 0.060099581 1.343777949 1
S in e  t r a n s f e r  f u n c t io n 219.0672742 240.6836446 217.0671159 1.391879726 0.417669241 135.7255167 6
C o s in e  t r a n s f e r  fu n c tio n 274.6038618 207.0571003 161.3597498 115.0618724 169.5493846 185.5263938 . 8

Fig. 3a: Graph of error variance of the best three transfer functions.
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Fig. 3b: Overall Performances of Error Variance of the Transfer Functions.

In the results involving wavelets, it is 
found in every analysis that the continuous 
wavelet neural network gives better results. 
Tables 3a -  3c consist of the CWNN results 
of the best performing transfer functions 
earlier discovered. These are the Hyperbolic 
Tangent transfer function, Hyperbolic 
Tangent Sigmoid transfer function and the 
Symmetric Saturating Linear transfer

function. For the Hyperbolic Tangent transfer 
function, CWNN resulted in a range of error 
variances, 0.000729592 - 0.009715933, with 
CWT 1 recording the least, and CWT 6 
recording the highest. This is in contrast to 
the result of the function using the original 
data, having error variance 0.060099581, 
which is higher.

Table 3a: CWNN Result of Hyperbolic Tangent Transfer Function

Hidden Layer - 
100

Mean Error 
(act-pred)

Mean Absolute 
Error Variance

Sub-Time Series 1 0.00389005 0.013951741 0.000729592
Sub-Time Series 2 0.004260697 0.024978109 0.003239021
Sub-Time Series 4 -0.008116418 0.030443781 0.002145085
Sub-Time Series 3 -0.033570647 0.05209204 0.004102457
Sub-Time Series 6 -0.005403483 0.071986567 0.009715933
Sub-Time Series 8 0.001421891 0.023469652 0.002512283
Sub-Time Series 5 0.019393035 0.032890547 0.002339264
Sub-Time Series 10 -0.003360199 0.046734328 0.005444832
Sub-Time Series 12 -0.01788209 0.022665174 0.00073663
Sub-Time Series 7 0.023131841 0.039681095 0.002958337
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Table 3b: CYVNN Result of Hyperbolic Tangent Sigmoid Transfer Function

H id d e n  L a y e r  - 
100

M e a n  E r ro r  
(a c t-p re d )

M e a n  A b so lu te  
E r ro r

V arian c e

Sub-Time Series 1 0.001477114 0.014383582 0.000739871
Sub-Time Series 2 0.035310448 0.131156219 0.039282011
Sub-Time Series 4 0.004956716 0.029195522 0.002329514
Sub-Time Series 3 0.028981592 0.048633333 0.004778149
Sub-Time Series 6 -0.005168657 0.028030348 0.002541222
Sub-Time Series 8 0.004595522 0.040067164 0.006018716
Sub-Time Series 5 0.014223881 0.035047761 0.002771785
Sub-Time Series 10 -0.001948756 0.016926866 0.000814949
Sub-Time Series 12 -0.007950249 0.025757214 0.001418593
Sub-Time Series 7 -0.038218905 0.043672637 0.002743456

Table 3c: CWNN Result of Symmetric Saturated Linear Transfer Function

Hidden Layer - 
100

Mean Error 
(act-pred)

M ean Absolute 
Error Variance

Sub-Time Series 1 0.012547761 0.083100995 0.099012345
Sub-Time Series 2 0.015978607 0.216885075 0.493311007
Sub-Time Series 4 -0.028518408 0.217135323 0.42369717
Sub-Time Series 3 -0.054432338 0.286941791 0.709184674
Sub-Time Series 6 0.031933333 0.247026866 0.427719785
Sub-Time Series 8 -0.035263184 0.352124876 0.951654567
Sub-Time Series 5 -0.005807463 0.285989552 0.587782167
Sub-Time Series 10 0.053563682 0.381137811 0.791104316
Sub-Time Series 12 -0.004406468 0.407753731 0.763670662
Sub-Time Series 7 -0.045742289 0.270354229 0.62697559

In the case of Hyperbolic Tangent 
Sigmoid transfer function, it is only CWT 2 
with error variance 0.039282011 that is 
higher than the result obtained using the 
original data. While in the case of the 
Symmetric Saturating Linear transfer 
function, all the sub-time series data show 
smaller variances compared to the result from 
the original result.

Conducting the test of hypotheses on the 
results obtained, it was found out that there 
are significant differences between each 
decomposed data and the original data as 
shown on Tables 4 and 5. The null 
hypothesis in the test for difference in the 
means stated that there is no difference.

Three alternative hypotheses were 
constructed. These are:
1 Pi -  po < o ;
2. Pi -  Po -  0 ’
3 hi -  ho > o■ ?

where hi is the mean of the 1 
decomposed data.

It is noted that only the first alternative 
hypothesis has the P -  va ûe > (that is
1.0000). The other two has P -  value < 0.05 
(that is, 0.0000).

The variance ratio test was used to test the 
validity o f the model based on the error 
generated by the network from each 
decomposed data. Similar to the previous test, 
three alternative hypotheses were also 
constructed, which are as follows:
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1 CT| — CFg < 0
2 CF; -  CJ0 0 5
3. -Oo > 0 ,

where, ffi is the standard deviation of the 
decomposed data

The test shows that at a i ~  a o ^  0 ; 
sub-series 1, 2, 4 and 6 are significant, while 
at a i -  > 0 , sub series l, 2, 4, 6 and 5
are significant. These can be seen on Table 
10.

Table 4: Sample Statistics of the Original Data and the CWNN

Mean Standard
Deviation

Standard Error of 
the Mean

Original Data 6.081095 14.33177 1.010885
Sub-Series 1 -0. 0105473 5.268888 0. 3716387
Sub-Series 2 0.0268657 11.987 0.8454978
Sub-Series 4 0.1049254 12.90514 0.9102586
Sub-Series 3 0.0257711 13.10204 0.9241467
Sub-Series 6 0.1443781 11.59102 0.8175676
Sub-Series 8 0.1827363 1 1.85019 0.8358478
Sub-Series 5 0.2015423 12.08643 0.852511
Sub-Series 10 0.2196518 12.79639 0.9025877
Sub-Series 12 0.2327861 13.73769 0.9689816
Sub-Series 7 0.1508955 11.57113 0.8161646

Table 5: Paired Sample Statistics of the Original Data and the CWNN

95% Confidence Interval of 
the Difference

t p -  v a lu e  at 
H p Uj -  no = 0 and
H t : ji] -  go > 0Lower Upper

Original Data - Sub-Series 1 4.605974 7.577309 8.0853 0.000
Original Data - Sub-Series 2 4.788468 7.31999 9.4317 0.000
Original Data - Sub-Series 4 4.412868 7.5.39471 7.5381 0.000
Original Data - Sub-Series 3 4.331777 7.77887 6.9278 0.000
Original Data - Sub-Series 6 4.078572 7.794861 6.3002 0.000
Original Data - Sub-Series 8 3.893714 7.903002 5.8020 0.000
Original Data - Sub-Series 5 3.841665 7.917439 5.6892 0.000
Original Data - Sub-Series 10 3.731568 7.991318 5.4267 0.000
Original Data - Sub-Series 12 3.608266 8.088351 5.1482 0.000
Original Data -Sub-Series 7 3.809 8.051398 5.5128 0.000

ISSN 11179333

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Udomboso, et al.: On the Level o f Precision o f  the Wavelet Neural Network in Rainfall Analysis 141

Table 6: Variance Ratio Test of the Original Data and the CWNN

p -  v a lu e  at 
Hi: cjj -  a 0 = 0

p -  v a lu e  at
Hj: et; -  a 0 > 0Upper Tail

(FIT)
Lower Tail

(FL) = i
Original Data - Sub-Series 1 171.375 0.006 0.0000 0.0000
Original Data - Sub-Series 2 7.016 0.143 0.0319 0.016
Original Data - Sub-Series 4 9.256 0.108 0.0159 0.008
Original Data - Sub-Series 3 3.314 0.302 0.1705 0.0853
Original Data - Sub-Series 6 9.142 0.109 0.0164 0.0082
Original Data - Sub-Series 8 1.830 0.546 0.4806 0.2403
Original Data - Sub-Series 5 4.807 0.208 0.0776 0.0388
Original Data - Sub-Series 10 2.653 0.377 0.2602 0.1301
Original Data - Sub-Series 12 2.834 0.353 0.2305 0.1153
Original Data -Sub-Series 7 4.232 0.236 0.1027 0.0513

Conclusion
The time plots of the actual data was 
scattered and all points fall on the positive 
side of the vertical axis, whereas the 
decomposed data were evenly distributed on 
both sides of the vertical axis. However, it 
was noticed that the clustering of the data 
became sparsely distributed as the correlation 
of the decomposed data with the original data 
became weaker. Optimal performances were 
noticed with Hyperbolic Tangent (tanli), 
Hyperbolic Tangent Sigmoid (tansig) and 
Symmetric Saturating Linear (satlins). 
Generally, as the hidden neurons increased, 
the error variances reduced, except in some 
cases where a L-shape is formed in the 
behaviour of the error variances. The data 
was decomposed to continuous wavelet 
analysis on a scale of 48 (that is, forty-eight 
series). Ten series were selected on the basis 
of high correlation with the original data. 
These series included'CWT 1, CWT 2, CWT 
4, CWT 3, CWT 6, CWT 8, CWT 5, CWT 
10, CWT 12, and CWT 7 (according to rank). 
The analysis showed that except in extremely 
rare cases, all the series performed optimally 
compared to the original data. The result of 
the study has been able to show that using the 
continuous wavelet transform in the ANN 
technique, a better performance of the 
network is observed.
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