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Abstract

Determining the number of liitltlen units for obtaining optimal network 
performance has been a concern over the years ilespite empirical results showing that 
with higher neurons, the netivork error is retlucetl. This has led to indiscrimate increase 
in the hidden neurons, thereby bringing about overfitting. On the other hand, using too 
few hidden neurons leads to error bias, which can make neural network statistically unfit. 
In this paper, we developed a model for R1 for investigating changes in hidden and input 
units, as well as developed tests that can be used in determining the number of hidden 
and input units to obtain optimal performance. The result o f the analyses shows that 
there is effect on the network model when there is an increase in the number o f hidden 
neurons, as well as the number of input units.
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1.0 Introduction

• Many researchers have had problem in determining the number of hidden units to obtain optimal network performance 
(Panchal et al [1], Reed [2]). A test can be used in solving this problem. Empirical results have shown that with higher 
neurons, the network error is reduced. However, if care is not taken, one may be tempted to increase the hidden neurons 
indiscriminately. When this happens, overfitting occurs. Also, too few hidden neurons leads to error bias, which sometimes 
can be very embarrassing, thus making neural network statistically unfit. We approach this problem by assuming that the 
introduction of additional hidden neuron does not make any difference in the network. Also, input variables can have effect 
on the performance of the network. This makes the choice of variables of serious importance in neural network. Putting a 
redundant variable into the network can overfit the coefficient of determination. For this reason, we introduce a test for 
variable selection, which works by determining if a given input variable contributes to network optimal performance.

The number of hidden neurons affects how well the network is able to separate data. A large number of hidden neuron 
will ensure correct learning, and the network would be able to correctly predict the data it has been trained on, while with too 
few hidden neurons, the network may be unable to learn the relationships amongst the data and error will fail to fall below an 
acceptable level. Swanson and White [3, 4] examined the problem of forward interest rates in predicting future spot rates 
from a model selection perspective in order to shed some additional light to the classical hypothesis testing perspective 
approach by Mishkin [5]. They considered not only linear models, as in Mishkin [5], but also a class of flexible non-linear 
functional forms called artificial neural networks. The results reported provided additional support for the hypothesis that 
forward rates are indeed useful, and suggest that the class of non-linear models which is considered may also prove useful for 
forecasting interest rates. More specifically, they found that the premium of the forward rate over the spot rate helps to 
predict the sign of future changes in the interest rate.
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Resop [6] used neural network models having no hidden neurons to those with enough hidden neurons enough to predict 
to the same accuracy as the statistical models he was comparing with. His work posed a question on what would happen 
when the hidden neurons are increased above that which predicts exact accuracy as the statistical models. Will there be a 
difference in the accuracy? In the work of Panchal et al [l], deciding the number of neurons in the hidden layers is seen as a 
very important part of deciding the overall neural network architecture. Though these layers do not directly interact with the 
external environment, they have a tremendous influence on the final output. Both the number of hidden layers and the 
number of neurons in each of these hidden layers must be carefully considered. Using too few neurons in the hidden layers 
will result in under fitting which makes the network difficult in adequately detecting the signals in a complicated data set. 
Likewise, using too many neurons in the hidden layers can result in over fitting, and increase in the time it takes to train the 
network.

This study centres on the Multi-Layer Perceptron (MLP) which happens to be the most commonly used type of ANN 
(Resop [6]). It has been found to be powerful in terms of model precision in the usage of homogeneous transfer functions 
(TFs), especially with complex or large data set. The choice of MLP is because it is the only ANN type that allows for 
statistical inference.

2.0 Theoretical Analysis
The statistical neural network model proposed by Anders [7] is given as

y  — / ( X , w) +  e  (I)
where y  is the dependent variable, X =  (jc0 =  l , * i ,  is a vector o f independent variables, w = (a ,/? ,y )  is the network 
weight: 'a ' is the weight o f  the input unit, ‘/T is the weight o f the hidden unit, and ‘y ’ is the weight o f  the output unit, and et 
is the stochastic term that is normally distributed (that is, e f ~  N(0, er2/,,)).
For an / case, it can be shown that 

a  =  glkijjN
W M

(2)

(3)
where w is the estimate o f  the network model, y \  =  y t —y°, ht = f ( x h w°), y° is the initial derivative o f the Gauss- 
Newton iterative algorithm, and w° =0. w can thus be expressed as

^  «  yn 1,2 l r  yM j.2 >Y yn .2 I\  2-(=ln((a) 4=1% ) /
So that we can write the estimated function o f  (1) as

y \  =  + e , (4)
Given n observations, we can write (4) in matrix form

r  =  n w  +  u  ( 5)
where f  is an n x  1 matrix, II is an n X k matrix, W is an k X 1 matrix, U is an n x  1 matrix. We note that U 
~A f(0 ,o2/„).
The sum o f squared residual is

E"=1 u 2 =  u ’u  =  y*'y* -  z W 'H 'r  +  w 'h 'h W
W H 'r  is a scalar which equals its transpose K"WH.
Minimizing the squared residual, we have that

W =  (H ,H )“1H'K* (6)
This implies that

P* =  HW (7)
We can decompose the y  vector o f  the network model, represented by Y‘ into the part explained by the regression and also 
the unexplained part. We can write Y* as

r  =  P* +  e =  h W +  e (8)
Taking the square o f (7), we have

r ' r  =  W 'h 'h W +  e'e (9)
We note that the sum o f squares o f  the T* values is 

n
r 'y *  =  ^  y ;2

t=i
and subtracting the mean from the values o f  Y\, 

n n

J V ;  -  r ) 2 =  ^  y \2 -  n r 2

- . 2  . i=1 f=1
nY* is known as the correction factor, which on subtraction from both sides o f  (9) gives
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( r ' r  -  n f 2)  =  (W 'n 'i tW  -  ?iF*2) +  e 'e

which can also be written as,
SSTn = SSRn +SSEn (10)

where,
SSTn is the Total Sum of Squares of the network in F*.
SSRn is the Explained (Regression) Sum of Squares of the network.
SSEN is the Unexplained (Error) Sum of Squares of the network.
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The performance of a network can be determined by the coefficient of determination, R2 [3, 4, 8 - 11], We can further obtain 
an expression to show the performance of the network whenever the number of hidden or input units or change. It is known 
that R2 is a measure of the fit of a model. It is essentially the proportion of the total variation in F* that is accounted for by 
variation in the regression.
That is,

R2 =

where A = 1 + 
Thus

R2 = 1 -

rV -n i '* 2
n f *2
y * y *

SSEn
s s t n

= 1

or

Y *1 AY*

R2 _  s s r n  

s s t n
(11)

Alternatively, we can express the coefficient of determination as the squared correlation between the observed values of F* 
and the predictive values produced by the estimated regression equation.

That is,
(Ex*?*)2 (12)

[ s i U ^ * ) l £ ? =1W-?*)2] 0>*2)Q:?•*)
Let Rj.; denote the coefficient of determination of a network with a given number of hidden units, and R\ denote the 
coefficient of determination of a network given a change in the number of hidden units. We note here that the change, 
can be an increase, h+1 or a decrease, h_1. The error produced by this change is given as

eHi) y h -  y Hi)
y l  is the output with a given number of hidden units, and y*h^  is the output given a change in the number of hidden units.

Then, Rl (Ey’yjp
V and Rhr„ =CCy*2)(E%2)’ ‘ h(0 })

We denote the difference in the coefficient of determination of the network as R2*, and express as,

?2co
(£ /? ;,)z(£yf,20)-(Ey*yj,(0)2(Ey;,2)

(z y 2)(zn 2)(Ey;,20)

Rl. =  Rl -  R2

(13)

In terms of the sum of squares,
(for simplicity, we denote SSTNh as SSTh, SSENh as SSEk, as well as SSTNh

descriptions are equivalent to that used for the outputs)

Rl = 1
SSEh(;\

(0

SST’/ j ... — SSRjj . ..

as SSI)l(l), and SSEtN h(/) as SSEh(0, and the

2 -  1 _  =  SSTh -S S E h a n d  R 2 _  ^  " (0  _  - - - n (0
S S T h S S T h

Then,
SS7\  o ssrht(0

^ 2  s s r kSSL-h (^  SSTh ([)SSEh 

h SSTh SSTh(()

Similarly, for a change in input units, the difference in R2 contribution is, 

r2 _  (£y,ym)2( z ^ m)-(E y% ,(n)2(E5>̂ ) 
in’ _  (£y*2)(£?;2)(£?;2(0)

(14)

(15)

where y*in is the output with a given number of input units, and yj„(i) is the output given a change in the number of input 
units. ,
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Similarly, in terms o f  sum o f  squares,
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2 SST in SSEin ^ S S T fa ^ S S E fa

R i n ’ ~  SSTlnSST,n(0

where the symbols are as described earlier for the outputs.

It should be noted that 55R% - i
SSE" / n - k

„  _  S SR jy (n -k ) _  R2(n - k )
— SSEN ( k - l )  ~  ( 1 - R 2)( fc -1 )

which we can also write in terms of R2 as F —
Rz ( n - k )

( 1 - R 2) (k -1 )

(16)

where F is the Fisher statistic.
Without conflict of symbol, we define the following for hidden units:

_  SSRh(n -k ) _  fife(n-fc) , „  _  SSRk g )(n fc> _  Hh(0 (n k)
h SSEh( k - 1) ( i - r£ ) (R -1)’ h(0 SSBh(0( k - l )  ( l - R £ (j))(k —1)

It should be noted that h and /i(i) are as defined above in the coefficient of determination. 
Now, / v  =  Fh -  Fh(()
Combining these equations results in

p  . -
h' (k-i)(i-Rj)(i-«J(0)

This result can also be shown in terms of the sum of squares.
That is,

(17)

Using (8), it implies that (7) can be rewritten as,

(18)

(19)

Equations (17), (18) and (19) are different expressions for the /''-test for change in hidden units in the neural network. 
The hypothesis for this problem is formulated as follows:
H0:ph = 0, Hp.ph *  0
where fih is the parameter of the hidden unit, and h = 1,2 ,...,//.
We reject the null hypothesis if \Fh- \ > |F |.
In the same, without conflict of symbols, we define the following for input units:

„  _  5S«<n(n-fc) _  Rin(n-fc) . „  _  ^ g tn(0 ( " - fc(0) Rfn(l)(n ~k lI) )

' in  SSEin ( k - l )  ( l —R?n ) (k —D ’ a n  <in(0  SSE,„( 0 (k (0 - l )  ( l - R f „ ( 0 )(fc (0 - l )

where k(i) is the number of input parameters or variables after a change (that is, increment or decrement).
This follows that

Fin’ Fin ^ n(()
_  (n -X )(k -k (0)Rfn Ri2n (0 -r[n (fc-l)-fc(fc(0 - l ) lR 2n .

(k—D (fc (0 - l ) ( l—R ?n)(l—Rfn(j))

The hypothesis is set up by assuming that an input variable at, has no effect on the output y '.  That is, 
H0. <Xi = 0, Hx. a t *  0

where a f is the parameter of the input unit, and i = 1,2,..., l.
We reject the null hypothesis if >  |F |.

3.0 Results And Discussion
This section discusses the results of analysis of the derivations in the previous section. We considered stepwise increase 

of the hidden neurons from 1 to 10, keeping the input unit constant for the first set of analyses, while the second set considers 
input units from 2 to 6, keeping the hidden neurons constant.

For change in hidden neurons, the hypothesis is given as follows:
//„:/?„ =  0, Hx.p h *  0
The hypothesis simply states that there is no effect in the neural network model when the hidden neuron is increased.
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Table 1: Values of R2 and R2 Change for change in Hidden Neurons

FIN R2 UN change R2 change

1 0.478346 1 to 2 0.332489
2 0.810835 2 to 3 -0.02534
3 0.785492 3 to 4 0.087695
4 0.873187 4 to 5 0.011567
5 0.884754 5 to 6 -0.12842
6 0.756336 6 to 7 0.092212
7 0.848547 7 to 8 0.046143
8 0.894691 8 to 9 0.084534
9 0.979224 9 to 10 -0.20962
10 0.769609

From Tabic I, it is noticed that except for hidden neurons changes from 2 to 3, 5 to 6, and 9 to 10, which shows negative 
contribution of the R2 change, other results shows a positive contribution of the R2 change.
The inference results in Table 2 shows rejection of hidden neurons contribution to the network model at hidden neurons 
change from 1 to 2 and 9 to 10. This implies that there was no significant effect on the network model when the number of 
hidden neurons is increased to 2 and 10 respectively.

Table 2: Values of F and F Change for change in Hidden Neurons
FIN F 1 IN change

‘ & --
F change |F| change Decision on Il0

1 7.335835 1 to 2 26.95519 26.95519 Reject

2 34.28647 2 to 3 -4.99637 4.99637 Accept

3 29.29465 3 to 4 25.79043 25.79043 Accept

4 55.08508 4 to 5 6.331858 6.331858 Accept

5 61.40357 5 to 6 -36.5849 36.5849 Accept

6 24.83205 6 to 7 19.98969 19.98969 Accept

7 44.81431 7 to 8 23.14491 23.14491 Accept

8 67.96664 8 to 9 309.0962 309.0962 Reject

9 377.0628 9 to 10 -350.339 350.339 Accept

10 26.72359

For change in input units, the hypothesis is given as follows: 
That is,
H0: a t =  0, Hl: a,- =£ 0
where a; is the parameter of the input unit, and i =  1,2,..., /.
The hypothesis simply assumes that increase in the input variable x, has no effect on the output y '.

K R2 K change R2 change
2 0.769609 2 to 3 0.219852
3 0.989462 3 to 4 -0.00063
4 0.988834 4 to 5 0.009836
5 0.99867 5 to 6 -0.01089
6 0.98778

Table 3 shows that at change from an even input unit to an odd input unit R2 change is positive, while at change from an odd 
input unit to even input unit, we have negative R2 change. This is attested to in Table 4 where there is rejection of the 
contribution the input units whenever it is increased from even to odd, and acceptance whenever the input unit is increased 
from odd to input.

Journal o f the Nigerian Association o f Mathematical Physics Volume 22 (November, 2012), 3 3 5 -3 4 0
339

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



On R2 Contribution and Statistical Inference of the... Udomboso, Tolulope and Mba J of NAMP

Table 4: Values of F and F Change for change in Input Units
K F K change F change |F | change Decision on ll0

2 26.72359 2 to 3 724.4002 724.4002 Reject

3 327.8361 3 to 4 -18.6582 18.6582 Accept

4 176.722 4 to 5 1324.805 1324.805 Reject

5 938.7028 5 to 6 -837.658 837.658 Accept

6 64.66858

4.0 Conclusion
In this study, we have been able to investigate the contribution of increase in hidden neurons and input units in a given 
statistical neural network model. The result of the analyses shows that there is effect on the network model when there is an 
increase in the number of hidden neurons, as well as the number of input units. At some point, indiscriminate increase in the 
number of hidden neurons is of no use. We notice especially that at increase from even to odd input units, the model has no 
significance difference. But on the other hand, an increase from odd to even shows a remarkable significance difference
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