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ABSTRACT 
The motivation for the present study is derived from the fact that time mafigaement is an integral pan of good engineer~ng 
practice. The present study investigated the quantification of the required computation time using two nonlinear and 
harmmhily excited osciltators (Pendulum and Duffing) as case studies. SirnuJations with personal computer were 
@@Wed for Runge-Kutta schemes (RK2, RK3, RK4. RK5, RK5M) and one blend (RKB) over thirty five thousand and ten 
exi3taWn periods consisting the unsteady and steady solutions. The need for validation of the developed FORTRANSO. 
codes by camparing Poincare results with their conbrpart from the literature informed the choice of simulation parameters 
Weve r ,  the simulation time was monitored at three !sngths of excitation period (15000, 25000 and 35000) uslng the 
cunent time subroutine mil cam-. 

The validation Poinca* resutts obtained for all the schemes including RKB compare well with the counterpart available in 
the literature far both Pbkdulwn and M n g .  The actual computation time increases with increasing order of scheme, but 
sufkred a decrease far ffie bknded scheme. The diffincerence in wrnpbtation time required between RK5 and RKSM is 
negligibie tot all studied cases. The actual c putational time for Duffing (5-33seconds) remain consistently higher for 
comspo~mg:Pehdulum (3-23skondsl ~ i t h ~ r e n c e  (2-IOseconds). Inferestingfy, the quantitative difierence between 
the compondi~~gd normelised computation time for systems and schemes is insignificant. It is insensitive to systems and 
~ ~ W W S  e&fomed a simpte aerage mti0{@.0) : (1 -5) : (2.0) : (3.1) : (3.1) : (2.4)) for RK2. RK3, RK4. RK5, RKSM 
arrd RK8 m@&tkly. It is concluded that the end justified the means provided that computation accuracy IS assured 
Wmg the h ~ ~ r & r ; s c h e r n e  (with higher computational time ratio). 

K ~ ~ w o c ~ & :  Sidat ion time, Nonlinear System, Harmonically excited system, Runge-Kutta schemes and Excitation 
period 

I 

Council for Innovative Research 
Peer Review Research Publishing System 

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 
i * k % l  10. %o 2 

editor@cirwortd.com 

wurvrl.ciwu:ld.com. member cir~vorfd.cam 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Computer simulations has been described as a process of designing a model of a real system , implementing the model 
as a computer program, and performing experiments with the model for the rationale of understanding the behavioui of the 
system, or evaluating strategies for the operation of the system (Classweb, 2013). There is no iota of doubt that time 
saving and management without compromise of its accuracy is crucial in the choice or acceptability of a numerical 
simulation technique. Finger and Uhlmann (1994) have demonstrated how the choice of a particular numerical method can 
help save a great deal of computational time. In their paper, the authors applied Runge-Kutta triples in estimating Poincare 
for autonomous systems. The outcome of the study revealed that a remarkable computational time can be saved with 
Runge-Kutta trkples by using an interpolation polynomial for dense output. Their research paper is indeed a great 
contribution to computer time management in Simulation of dynamical systems. Haecheon and Parviz (1994) studied the 
effects of the computational time step on numerical ~0l~t i0nS of turbulent flow. In turbulent channel flow computations; the 
largest computational t i  in wall units which led to the accurate prediction of turbulence statistics was estimated. It was 
concluded from the authors' paper that turbulence fluctuations can only be sustained by a cautious cholce of 
computational time step. Ludovic et a/ (2002) proposed an automatic time stepping algorithm useful for numerical 
simulations of nonlinear dynamics. The authors learnt from research experience that constant step size strategies 
generally lead to divergence or extremely costly computations This motivated the authors to initiate an algorithm that 
automatically takes decision in order to update the tangent matrix or stopping the iterations. The authors demonstrated 
that this technique heis reduced the computational time cost using several real life rndustrial problems. This is no doubt a 
great contribution fo researchers' efforts in saving the computer time required for numerical simulations. As part of efforts 
made in improving the computational time efficiency in the numer'ial solutions of the differenttal algebrarc equations often 
encountered in the power system simulation, Siddhartha and James (2008) applied unsymmetrical multifrontal method to 
solve the differential equations. Simulation results showed that the method achieves enormous computational advantage 
when compared to the conventional Gaussian methods as well as other linear sparse solvers. The application of nonlinear 
dynamic models in economics and finance has experienced astronomical expansion in the last two decades (Diks et a/, 
2008). The authors developed a user friendly mflware package for nonlinear dynamics. The software IS embedded with 
many nonlinear modet features that are easy to use without the need for a compiler or additional software. The authors 
asserted that2% $hotter and more efficient representation within the software is capable of reducing the Computational time 
A study wh', "lized( blend of phase plots&,ffme steps and adaptive t h e  steps as well as the fifth order Runge-Kutta 
algorithms @ e n  6% by Sdlau and Ajiffep0fZ) to study a harmo"@a@~xcited Duffing oscillator dynamics. Findings 
of the studg&€iwed,@&t there is fav~ur&le~~compulational time with Be use of fifth order Runge-Kutta method. The 
authors h&T&r concluded that a foufth order algorithm is the more appropriate method when very high accuracy is 
desired although with higher computational time. In an article written by Sett (2013), the need to reduce computer 
simulation time was emphasized. The authors satisfactorily describe a technique of running multiple simulations in parallel. 
The authors explained that it is possible to reduce the computational time it take to run multiple independent simulations 
by distributing simulation tasks among multiple processing cores with simulink and parallel computing too box. The overall 
simulation time can be further reduced by using MATIAB distributed computing server to run the simulations on a 
computer cluster. 

The immense importance of Runge-Kutta method as numerical techniques in the study of nonlinear system characteristics 
cannot be overemphasized. Several investigations of the nonlinear dynamical behaviours undei different scenarios have 

ut mearchers using Runge-KuGa techniques. A study which bothers on the implementation of fourth and 
plemented for Ws le r  system (Nikotaos , 2009). The aythor utilized e*,icit MATLAB 

tign of fourth and fifth orders Runge-Kutta. Using R ~ s s ~ ~ F  system of equatibns, results 
usly gives smaller errors for a given running time vjhen compared dfh the fourth 
one of the newly developed Runge-Kutta methods known as RK-Butcher algorithm 

in the simlrlaiion study of nonlinear singular system. The method was found to be efficient and very accurate when 
compared to the? &sica~fautth order Runge-Kutta The paper goncluded that this newly developed RK-Butcher algorrthm 
can eawily be implemented in a digita1:computer and the simulation results can be obtained for any length of trme wlth hlgh 
precisions, In the very recent time, so many researchers utilized Runge-Kutta methods in the characterization of nonlinear 
dynamics systems [See: Jian and Huazhong (2013), Wang (2013), Mustafa et al2013, Salau and A~ide (2013)l 

Pendulum and Duffing oscillators that are harmonically excited are two of the numerous nonlinear mechanical systems 
that Runge-Kutta has been intensely used as numerical technique. Salau and Ajide (2Q13) utilized Runge-Kutta schemes 
in the study of fractal characteristics of harmonic@ly excited pendulum using poinear6 sectioning approach. The outcome 
of their study has shown the utilily of the novel graphic plots as a dynamic systems characterizing tool for harmonically 
excited pendulum. Harmonically excited Pendulum and Duffing oscillators are specificalty attracting some researchers' 
interests. This is because of their versatile engineering applications. Therefore, other methods are equally being explored 
as means of their characterization in addition to the popular Runge-Kutta methods. Liang and Feeny (2008) have studied 
the parametric ldenfification of a chaotic based-excited double pendulum dynamics. The parametric identification of the 
chaotic system was examined through a careful recorded response experimental data. The unstable periodic orbits were 
extracted from the data and used in harmonic balance identification for the process. The authors' expenmental results 
informed that the formulated identification algorithm for the system is highly successful. Chen et al (2012) examined the 
stochastistic stability of the harmonically and randomly exclted Dufing oscillator The obtained results from the Lyapunov 
eXpfInent have shown the richness in the characteristics of harmonically excited Duffing oscillator. The effects of different 
damping mechanisms on the response of harmonically excited Duffing oscillators have been examined (Ivana et a/, 201 1) 
Results obtained have no doubt provided a significant platform for interested researchers in this field. 
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From the foregoing, there is no doubt that avalanche of literature exists in the nonlinear characterization of the very 
important mechanical engineering systems such as harmonically excited Puffing ~scillator and Pendulum by means of 
Runge-Kutta schemes 'as well other equally acceptable techniques. In spite of the landmark achievements in the 
characterization of these two nonlinear systems, an obvious lacuna exists: There is dearth of literature that bothers on the 
required computational time far different Runge-Kutta schemes using two nonlinear and harmonically excited oscillators 
(Pendulum and Dufling) as case studies.The importance of time saving and management in engineering practice cannot 
be over emphasized. The strong zeal of the authors in savingtmanaging the computer time required for numerical 
simulatkons of nonlinear dynamical systems immensely motivated the Kesent paper. 

2. METHODOLOGY 
The second ordw governing equations for the oscillators (Pendulum and Duffing) were adapted from Gregory and Jerry 
(1990) and Dowell (1988) respectively. In equation (I) q is the damping quality parameter, g is the forcing amplitude, 

and W,, is the drive frequency. Similarly, in equation (2) the damp coefficient is y , the amplitude strength of harmonic 

excitation and excitation frequency are respectively e, ,. @ . The time (t) is a common variable to the two equations. 

The relevant tranrform&%$n of equations (1) an{(2) that will enable theirkungsdutta simulation under the assumptions ( r 
~ & h m t ,  8, = angul&velocity, x, = &zeur displacement and x, = linear velocip) 

of first order differential equations (3&4 arid 586). 

Tf3e present study utiised the under-listed popular constant operation time step Runge-Kutta schemes (codes in 
FORTRANgO) to simulate equations (3) to (6) from initial conditions (a, 0) through unsteady and steady solutions. The 
unsteady and steady simulations $panned ten thirty five thousand excitation periods respectively for each scheme 

'&+tttBg+Kutta (Rw) . , . _  
P Third order Runge-Kutta p 

p ~ ~ ~ r t h  w+e*r +i.~ i7- h i  .t 
. . 

RI. . 2 s . .  

P Fifth order ~ungekutta (RK~) 
P Butchers' (1964) Modified Fifth order Runge-Kutta (RKSM) 
9 Uniform blend (driven with random seed value of 9876) Runge-Kutta (RKB=RK2+RK3+RK4+RKs+RKSM) 

Steven and Raymond (2006) refer. The simulation predictor of the different Runge-Kutta schemes as function of 
derivatives (K, ) evaluated at i-nodes (scheme specific) within the time step interval (A = h )  are given in equations (7) 

to (10). It is important to note that y t el, 0, for the Pendulum and y t x,,  x, for the Duffing. 

2.1 Second order Runge-Kutta (RKZ): 

2 2  Third order Runge-Kwtta (RK3): 
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2.3 Fourth order Runge-Kutta (RK4): 

2.4 Fifth order Runge-Kutta Method (RK5): 

The fifth order Runge-Kutta scheme and the Butchers' (1964) modified fifth order Runge-Kutta scheme shared the same 
predictor function as in equation (10). However the nodes specifications are different. 

2.5 Simulation Parameters 
The basic relevant properties of the laptop used for this study are as follow: 

Processor: Intel (R) Pentium (R) Dual CPU T3400 @2.16GHz 2.17GHz 

Memory (RAM): 2.00GB 

System type: 32-bit operating system 
i, \, .&# 

The ~endul$< and4 buffing were simulated with ( 
q,g w, = 4,1.5,2/3 

1 and ( 
y, 4, CD = 0.168,0.2 1.1  .O 

1 
respectively,,l$~se setting serve well for validation of the FORTRANgOt codes developed for the present study. The - G 

~ 7 , "  - 
constant si@on & step is 

T 
= Tp/50?,  where P represent the excitation period. &r 

The timer & ~ s y s & ~ c ~ o c k  which responds to a subroutine call command-CALL SYSTEM-CLOCK (ITIME). 
~ .- 

3. RESULTS AND DISCUSSJONS 
The PoincW section for the validation cases are given in figures 1 (a) and l(b). The sections compare correspondingly 
well with tha results of Gregory and Jerry (1990) and Dowell (1988). Furthermore all the schemes includihg the blended 
(RKB) return the same qualitative corresponding Poincare section, see sample in figures 2(a) and 2(b). 

Poincare Section (Pendulum-W2) 

Angular ddkplaeemtnt 

Figure 1: Poincare sections of Pendulum ( 9, g OD E 4,1 2/3 ) and Dumng ( 
y,P, w = 0,168,0.21,1.0 

1 
oscillators using second order Runge-Kutta scheme 
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Figure 2:~oincare sections of Pendulum ( q, g a, = 4,1.5,2/3 ) and Duffing ( y, P, w = 0.168,0.2 1,l.O ) 
oscillators using the blended scheme. 

Table 1 : Pendulum: Actual Cmpuation Time (in second) Returned for specified simulation length period by 
different schemes. 

Tables 1 and 2 refers. The actual computation time increases nbn-uniformly from second order Runge-Kutta scheme 
to Butchers' (1964) modified fifth order schem and suffered dercrease on blended scheme for both Pendulum and Duffing 
oscillators.The actual computation time required for the simulation of the dynamics of pendulum is in the range (3- 
23seconds) while for the Duffing the range is (5-33sewnds). The pendulum rewrded higher actual computation time 
consistently compared with its Duffing counterpart and for corresponding cases. The range of the difference in actual 
computation time is (2-1 Oseconds). 
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Figures 3 to 5 below gives the variation of the normaiised computation time (IJ-CT) with different schemes The base 
value is the actual time reparted for the second order scheme (RK2), 

Pendulum monitored at 3-Levefs 

4- Tp= 15000 + Tp=25000 Tp=35000 

3.5 - 
3.0 - 

1 ' 2 3 4 5 6 

Serlal No of Scheme 

Figure 3: The Jariation of nomalised computation time (N-CT) with the schemes for the case of pendulum. 

Duffing monitored at 3-Levels 

3: 4 

Serial No of Scheme 

Figure 4: The variation of nomalised computation time (N-CT) with the Schemes for the case of Duffing 
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Pendulum and Duffing Monitored at Tp=35000 

--e Pendulum -m-- Duffing 

3.5 - 
3.0 - 

+ 2.5 - 
V = 2.0 - 

1 2 3 4 5 6 

Serial,No of Scheme 

Figure 5: TComparison of the variation of normalised computation time (NGT) with the schemes between 
Pendutum and PfFing. 

Figures 3 to d &r. The trend of the norrnalised computation time in figure 3 suggest gravitation toward a well defined 
limit with in&esing simulation length period; Comparing figures 3 and 4 there is a repeat of observation made with the 

lid computation time in figure 4. That is the variation trend indicate that a definite limit is attainable 
o@t&n length period. Hoqeyer-figure 5 compare the variation of normalised computation time between 
dm and Duffing) at Ia:rge simulation length period of 35000. It can be observed that insignificant 

n the corresponding normalised computation time as the scheme is varied. The aVerage ratio of the 

nmalised computation time for the schemes is ((1'0) :(le5) :(2'0) : (3'1) : (3'1) : (2.4)yt Tp=3500 for Rk2. RK3. 
RK4,RKS,RKSMI and RKB respectively Thus the ratio can be said to 'be insentive ar do not have regard for the dynam~cs 
system bemg investigated 

4. CONqLUSIONS 
This stu&h developed a simulation plafforin involving multiple Runge-Kutta schemes for the investigation of the 
required:~@pc1ta@onal time fcr the cases of nonlinear and harmonically excited oscillators (pendulum and Dufflng). The 

ation time required for the sirnutation of the dynamics of pendulum is in the range (3-23secands) while for 
rang< is.-(5-33seconds). The pendulum recorded higher actual computation time consistently compared 

ng aDhtep€i@and for corresponding cases. The range of the difference in actual computafion time IS (2- 
the normalised computation time required for corresponding cases are insensitive to system - - * . :  
average for the systems produced simplest ratio { (1.0) : 0.5) : (2.0) : (3.1) : (3.1): (2.4)1at 

pd, third, fourth, fTi'th,.Butchers'(l964) modified fifth order schemes and their unfform but random- 
It kcancluded that higher comgyta$tion time factor associated with the hiher order Runge-Kutta 

schemes can be accombgab-on the assurance of p r o t i i i  $accurate simulation restllts. 
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~ ~ ~ e n d i $ ~ s t m c t u r a ~  M i n e  of Simulation Procedures 

(1) Start 
(2) Read input data including the prescribed system (pendulum or Duffing) brameters, initial condition, simulat~on 

*o'd lengths (unsteady and steady), number of simulation time step per period and random numer generating 
seed value. 

(3) Petform fhe pmliminary calcufations that is common to all Runge-Kutta schemes to be investigated. 
(4) Utilised secand order Runge-Kutta scheme to simulate the dynamic system (Pendulum or Duffing) from the 

precribed initial conditions to the end of specified simulation length period. As the s~rnulation progress mon~tor the 
..actual computaation time at three simulation periods specified using current time call subroutine command and 
ffack results for further processing. 

(5) Repeat (4) for the third order scheme. 
(6) Repeat (4) for the fourth order scheme 
(71 R-at (4) for the fifth order scheme 
(8) Repeat (4).f&.fhpjButqhen' (1964) modified fifth prder scheme. 
(9) Repeat (4), bEit ~%lCe%'l&@ EI of scheme at randoinFqn the lists of five: second, third, fourth, fifth and Butchers' 

( I M )  m)mod%ed order s&&&,- e l k +  . . :  . . .- , il L ,.. 
(1 0) Stop and End. 
(1 1) Perform relevants post simulation processing of the output results using Microsoft Excel-2003. 
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